12 research outputs found
Radiotherapy for Soft Tissue Sarcomas after Isolated Limb Perfusion and Surgical Resection: Essential for Local Control in All Patients?
Background: Standard treatment for localized soft tissue sarcoma (STS) is resection plus adjuvant radiotherapy (RTx). In approximately 10% of cases, resection would cause severe loss of function or even require amputation because of the extent of disease. Isolated limb perfusion (ILP) with tumor necrosis factor alpha (TNF-α) and melphalan can achieve regression of the tumor, facilitating limb-saving resection. RTx improves local control but may lead to increased morbidity. Methods: In our database of over 500 ILPs, 122 patients with unifocal STS were treated by ILP followed by limb-sparing surgery. All included patients were candidates for amputation. Results: Surgery resulted in 69 R0 resections (57%), and in 53 specimens (43%) resection margins contained microscopic evidence of tumor (R1). Histopathological examination revealed >50% ILP-induced tumor necrosis in 59 cases (48%). RTx was administered in 73 patients (60%). Local recurrence rate was 21% after median follow-up of 31 months (2-182 months). Recurrence was significantly less in patients with >50% ILP-induced necrosis versus ≤50% necrosis (7% vs. 33%, P = 0.001). A similar significant correlation was observed for R0 versus R1 resections (15% vs. 28%, P = 0.04). In 36 patients with R0 resection and >50% necrosis, of whom 21 were spared RTx, no recurrences were observed during follow-up. Conclusions: In patients with locally advanced primary STS, treated with ILP followed by R0 resection, and with >50% ILP-induced necrosis in the resected specimen, RTx is of no further benefit
Isolated Limb Perfusion and External Beam Radiotherapy for Soft Tissue Sarcomas of the Extremity: Long-Term Effects on Normal Tissue According to the LENT-SOMA Scoring System
BACKGROUND: With the combined treatment procedure of isolated limb perfusion (ILP), delayed surgical resection and external beam radiotherapy (EBRT) for locally advanced soft tissue sarcomas (STS) of the extremities, limb salvage rates of more than 80% can be achieved. However, long-term damage to the healthy surrounding tissue cannot be prevented. We studied the late effects on the normal tissue using the LENT-SOMA scoring system. PATIENTS AND METHODS: A total of 32 patients-median age 47 (range 14-71) years-were treated for a locally advanced STS with ILP, surgical resection and often adjuvant 60-70 Gy EBRT. After a median follow-up of 88 (range 17-159) months, the patients were scored, using the LENT-SOMA scales, for the following late tissue damage: muscle/soft tissue, peripheral nerves, skin/subcutaneous tissue and vessels. RESULTS: According to the individual SOM parameters of the LENT-SOMA scales, 20 patients (63%) scored grade-3 toxicity on one or more separate items, reflecting severe symptoms with a negative impact on daily activities. Of these patients, 3 (9%) even scored grade-4 toxicity on some of the parameters, denoting irreversible functional damage necessitating major therapeutic intervention. CONCLUSIONS: In evaluating long-term morbidity after a combined treatment procedure for STS of the extremity, using modified LENT-SOMA scores, two-thirds of patients were found to have experienced serious late toxic effects
20 Years Experience of TNF-Based Isolated Limb Perfusion for In-Transit Melanoma Metastases: TNF Dose Matters
Background: Approximately 5-8% of melanoma patients will develop in-transit metastases (IT-mets). Tumor necrosis factor-α (TNF) and melphalan-based isolated limb perfusion (TM-ILP) is an attractive treatment modality in melanoma patients with multiple IT-mets. This study reports on a 20 years experience and outlines the evolution and major changes since the introduction of TNF in ILP. Methods: A total of 167 TM-ILPs were performed in 148 patients, between 1991 and 2009. TM-ILPs were performed at high doses of TNF (3-4 mg) from 1991 to 2004 (n = 99) and at low doses of TNF (1-2 mg) from 2004 to 2009 (n = 68) under mild hyperthermic conditions (38°C-39.5°C.). Melphalan doses were unchanged at 10-13 mg/l (leg and arm, respectively). Characteristics for the 167 ILPs were
Isolated limb perfusion for unresectable extremity cutaneous squamous cell carcinoma; an effective limb saving strategy
Background: A small minority of patients present with locally advanced cutaneous Squamous Cell Carcinoma (cSCC). The aim of this study was to evaluate the effectiveness of Tumour necrosis factor α (TNF) and melphalan based isolated limb perfusion (TM-ILP) as a limb saving strategy for locally advanced extremity cSCC.
Methods: A retrospective search from prospectively maintained databases, at two tertiary referral centers, was performed to identify patients treated with TM-ILP for locally advanced cSSC of an extremity between 2000 and 2015.
Results: A total of 30 patients treated with TM-ILP for cSCC were identified, with a median age of 71 years (36–92) and 50% female. Response could not be evaluated in 3 patients. After a median follow up of 25 months, the overall response rate was 81% (n = 22), with 16 patients having a complete response (CR, 59%). A total of 7 patients developed local recurrence, with a median time to recurrence of 9 months (Interquartile Range 7–10). Progressive disease was observed in 5 patients (19%). Limb salvage rate was 80%. The overall 2-year survival was 67%.
Conclusions: TM-ILP should be considered as an option in patients with locally advanced cSCC in specialised centers, resulting in a high limb salvage rate
Isolated limb perfusion for unresectable extremity cutaneous squamous cell carcinoma; an effective limb saving strategy
BACKGROUND: A small minority of patients present with locally advanced cutaneous Squamous Cell Carcinoma (cSCC). The aim of this study was to evaluate the effectiveness of Tumour necrosis factor a (TNF) and melphalan based isolated limb perfusion (TM-ILP) as a limb saving strategy for locally advanced extremity cSCC. METHODS: A retrospective search from prospectively maintained databases, at two tertiary referral centers, was performed to identify patients treated with TM-ILP for locally advanced cSSC of an extremity between 2000 and 2015. RESULTS: A total of 30 patients treated with TM-ILP for cSCC were identified, with a median age of 71 years (36-92) and 50% female. Response could not be evaluated in 3 patients. After a median follow up of 25 months, the overall response rate was 81% (n = 22), with 16 patients having a complete response (CR, 59%). A total of 7 patients developed local recurrence, with a median time to recurrence of 9 months (Interquartile Range 7-10). Progressive disease was observed in 5 patients (19%). Limb salvage rate was 80%. The overall 2-year survival was 67%. CONCLUSIONS: TM-ILP should be considered as an option in patients with locally advanced cSCC in specialised centers, resulting in a high limb salvage rate