7 research outputs found

    Aging and Visual Counting

    Get PDF
    Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a "single glance", without the confounding influence of eye movements.We recruited 104 observers with normal vision across the age span (age 21-85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61-85: ∼5 dots) when compared with the youngest groups (age 21-40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more.Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin

    Initiation of mRNA translation in bacteria: structural and dynamic aspects

    Get PDF

    Aging and mfERG Topography

    No full text
    Aim: To study the effect of aging retina on the multifocal electroretinogram (mfERG). Methods: A total of 18 young subjects (age 18 -24 years) and 36 elderly subjects (aged 60 -85 years) with intraocular lenses (IOLs) were recruited for this study. No subjects had significant eye diseases or media opacities. mfERG was measured in standard conditions using the VERIS system (version 4.1). There were three groups of 18 subjects: (1) 18 -25 years, (2) 60-70 years, and (3) 75 -85 years. mfERG responses were grouped into central, paracentral, and peripheral regions for analysis. The N1 amplitude, P1 amplitude, N1 latency, and P1 latency of the first-order responses were analysed. Results: Age had no effect on P1 latency, N1 amplitude, and P1 amplitude; however, N1 latencies from central to peripheral regions were significantly longer for group 3 than for group 1. Conclusions: This study suggests that measured age-related decreases in mfERG responses are due to optical factors (decrease in retinal light levels, scatter) before the age of 70 years, but neural factors significantly affect mfERG topography after the age of 70 years.School of Optometr
    corecore