108 research outputs found

    Mapping Connectivity Damage in the Case of Phineas Gage

    Get PDF
    White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a “tamping iron” was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25–36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized “average” brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient

    Network Structure Implied by Initial Axon Outgrowth in Rodent Cortex: Empirical Measurement and Models

    Get PDF
    The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains

    Structural MRI studies of language function in the undamaged brain

    Get PDF
    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-based morphometry of whole brain grey or white matter images and diffusion tensor imaging. At present, there are relatively few structural imaging studies of language. We group them into those that investigated (1) the perception of novel speech sounds, (2) the links between speech sounds and their meaning, (3) speech production, and (4) reading. We highlight the validity of the findings by comparing the results to those from functional imaging studies. Finally, we conclude by summarising the novel contribution of these studies to date and potential directions for future research

    Integrating Functional and Diffusion Magnetic Resonance Imaging for Analysis of Structure-Function Relationship in the Human Language Network

    Get PDF
    The capabilities of magnetic resonance imaging (MRI) to measure structural and functional connectivity in the human brain have motivated growing interest in characterizing the relationship between these measures in the distributed neural networks of the brain. In this study, we attempted an integration of structural and functional analyses of the human language circuits, including Wernicke's (WA), Broca's (BA) and supplementary motor area (SMA), using a combination of blood oxygen level dependent (BOLD) and diffusion tensor MRI.Functional connectivity was measured by low frequency inter-regional correlations of BOLD MRI signals acquired in a resting steady-state, and structural connectivity was measured by using adaptive fiber tracking with diffusion tensor MRI data. The results showed that different language pathways exhibited different structural and functional connectivity, indicating varying levels of inter-dependence in processing across regions. Along the path between BA and SMA, the fibers tracked generally formed a single bundle and the mean radius of the bundle was positively correlated with functional connectivity. However, fractional anisotropy was found not to be correlated with functional connectivity along paths connecting either BA and SMA or BA and WA. for use in diagnosing and determining disease progression and recovery

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore