12 research outputs found

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap

    Effects of Extreme Precipitation to the Distribution of Infectious Diseases in Taiwan, 1994–2008

    Get PDF
    The incidence of extreme precipitation has increased with the exacerbation of worldwide climate disruption. We hypothesize an association between precipitation and the distribution patterns that would affect the endemic burden of 8 infectious diseases in Taiwan, including water- and vector-borne infectious diseases. A database integrating daily precipitation and temperature, along with the infectious disease case registry for all 352 townships in the main island of Taiwan was analysed for the period from 1994 to 2008. Four precipitation levels, <130 mm, 130–200 mm, 200–350 mm and >350 mm, were categorized to represent quantitative differences, and their associations with each specific disease was investigated using the Generalized Additive Mixed Model and afterwards mapped on to the Geographical Information System. Daily precipitation levels were significantly correlated with all 8 mandatory-notified infectious diseases in Taiwan. For water-borne infections, extreme torrential precipitation (>350 mm/day) was found to result in the highest relative risk for bacillary dysentery and enterovirus infections when compared to ordinary rain (<130 mm/day). Yet, for vector-borne diseases, the relative risk of dengue fever and Japanese encephalitis increased with greater precipitation only up to 350 mm. Differential lag effects following precipitation were statistically associated with increased risk for contracting individual infectious diseases. This study’s findings can help health resource sector management better allocate medical resources and be better prepared to deal with infectious disease outbreaks following future extreme precipitation events
    corecore