87 research outputs found

    Benchmarking DNA extraction methods for phylogenomic analysis of sub-Antarctic Rhodococcus and Williamsia species

    Get PDF
    Bacteria containing mycolic acids in their cell envelope are often recalcitrant to cell lysis, so extracting DNA of sufficient quality for third-generation sequencing and high-fidelity genome assembly requires optimization, even when using commercial kits with protocols for hard-to-lyse bacteria. We benchmarked three spin-column-based kits against a classical DNA extraction method employing lysozyme, proteinase K and SDS for six lysozyme-resistant, sub-Antarctic strains of Corynebaceriales. Prior cultivation in broths containing glycine at highly growth-inhibitory concentrations (4.0–4.5%) improved cell lysis using both classical and kit methods. The classical method produced DNA with average fragment sizes of 27–59 Kbp and tight fragment size ranges, meeting quality standards for genome sequencing, assembly and phylogenomic analyses. By 16S rRNA gene sequencing, we classified two strains as Williamsia and four strains as Rhodococcus species. Pairwise comparison of average nucleotide identity (ANI) and alignment fraction (AF), plus genome clustering analysis, confirmed Rhodococcus sp. 1163 and 1168 and Williamsia sp. 1135 and 1138 as novel species. Phylogenetic, lipidomic and biochemical analyses classified psychrotrophic strains 1139 and 1159 as R. qingshengii and R. erythropolis, respectively, using ANI similarity of >98% and AF >60% for species delineation. On this basis, some members of the R. erythropolis genome cluster groups, including strains currently named as R. enclensis, R. baikonurensis, R. opacus and R. rhodochrous, would be reclassified either as R. erythropolis or R. qingshengii

    Properties of an acid-tolerant, persistent Cheddar cheese isolate, Lacticaseibacillus paracasei GCRL163

    Get PDF
    The distinctive flavours in hard cheeses are attributed largely to the activity of nonstarter lactic acid bacteria (NSLAB) which dominate the cheese matrix during maturation after lactose is consumed. Understanding how different strains of NSLAB survive, compete, and scavenge available nutrients is fundamental to selecting strains as potential adjunct starters which may influence product traits. Three Lacticaseibacillus paracasei isolates which dominated at different stages over 63-week maturation periods of Australian Cheddar cheeses had the same molecular biotype. They shared many phenotypic traits, including salt tolerance, optimum growth temperature, growth on N-acetylglucosamine and N-acetylgalactosamine plus delayed growth on D-ribose, carbon sources likely present in cheese due to bacterial autolysis. However, strains 124 and 163 (later named GCRL163) survived longer at low pH and grew on D-tagatose and D-mannitol, differentiating this phenotype from strain 122. When cultured on growth-limiting lactose (0.2%, wt/vol) in the presence of high concentrations of L-leucine and other amino acids, GCRL163 produced, and subsequently consumed lactate, forming acetic and formic acids, and demonstrated temporal accumulation of intermediates in pyruvate metabolism in long-term cultures. Strain GCRL163 grew in Tween 80-tryptone broths, a trait not shared by all L. casei-group dairy isolates screened in this study. Including citrate in this medium stimulated growth of GCRL163 above citrate alone, suggesting cometabolism of citrate and Tween 80. Proteomic analysis of cytosolic proteins indicated that growth in Tween 80 produced a higher stress state and increased relative abundance of three cell envelope proteinases (CEPs) (including PrtP and Dumpy), amongst over 230 differentially expressed proteins

    EEG Microstate Analysis in Drug-Naive Patients with Panic Disorder

    Get PDF
    Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli

    Transcriptome characterization of the South African abalone Haliotis midae using sequencing-by-synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide, the genus <it>Haliotis </it>is represented by 56 extant species and several of these are commercially cultured. Among the six abalone species found in South Africa, <it>Haliotis midae </it>is the only aquacultured species. Despite its economic importance, genomic sequence resources for <it>H. midae</it>, and for abalone in general, are still scarce. Next generation sequencing technologies provide a fast and efficient tool to generate large sequence collections that can be used to characterize the transcriptome and identify expressed genes associated with economically important traits like growth and disease resistance.</p> <p>Results</p> <p>More than 25 million short reads generated by the Illumina Genome Analyzer were <it>de novo </it>assembled in 22,761 contigs with an average size of 260 bp. With a stringent <it>E</it>-value threshold of 10<sup>-10</sup>, 3,841 contigs (16.8%) had a BLAST homologous match against the Genbank non-redundant (NR) protein database. Most of these sequences were annotated using the gene ontology (GO) and eukaryotic orthologous groups of proteins (KOG) databases and assigned to various functional categories. According to annotation results, many gene families involved in immune response were identified. Thousands of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were detected. Setting stringent parameters to ensure a high probability of amplification, 420 primer pairs in 181 contigs containing SSR loci were designed.</p> <p>Conclusion</p> <p>This data represents the most comprehensive genomic resource for the South African abalone <it>H. midae </it>to date. The amount of assembled sequences demonstrated the utility of the Illumina sequencing technology in the transcriptome characterization of a non-model species. It allowed the development of several markers and the identification of promising candidate genes for future studies on population and functional genomics in <it>H. midae </it>and in other abalone species.</p
    corecore