29 research outputs found

    University students’ self-regulated learning using digital technologies

    Get PDF
    Abstract Analysing the process by which students—whether at university or not—manage and facilitate their own learning has been a recurrent educational research problem. Recently, the question arises about how the development of strategies taking place during the aforementioned process could be made easier by using technologies. In an effort to know whether university students really use digital technologies to plan, organize and facilitate their own learning, we have proposed three research questions. Which technologies do university students use to self-regulate their learning? What self-regulated learning strategies do they develop using technologies? What profiles could be identified among students based on their use of self-regulation strategies with technology? To answer these questions, the “Survey of Self-regulated Learning with Technology at the University” was designed. Information from a sample group with 711 students from various universities located in the region of Andalusia (Spain) was collected with this survey. The results indicate that university students, even when they are frequent users of digital technology, they tend not to use these technologies to regulate their own learning process. Of all technologies analysed, Internet information search and instant communication tools are used continually. In turn, the most generalised self-regulation learning strategies are those relative to social support. Nevertheless, students differ from each other regarding their use and frequency. There are groups of students who make use of self-regulation strategies when learning with technologies. In this regard, two distinctive groups of students have been identified, who show differentiated self-regulated levels

    In vitro culturing of ciliary respiratory cells—a model for studies of genetic diseases

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare genetic disorder caused by the impaired functioning of ciliated cells. Its diagnosis is based on the analysis of the structure and functioning of cilia present in the respiratory epithelium (RE) of the patient. Abnormalities of cilia caused by hereditary mutations closely resemble and often overlap with defects induced by the environmental factors. As a result, proper diagnosis of PCD is difficult and may require repeated sampling of patients’ tissue, which is not always possible. The culturing of differentiated cells and tissues derived from the human RE seems to be the best way to diagnose PCD, to study genotype–phenotype relations of genes involved in ciliary dysfunction, as well as other aspects related to the functioning of the RE. In this review, different methods of culturing differentiated cells and tissues derived from the human RE, along with their potential and limitations, are summarized. Several considerations with respect to the factors influencing the process of in vitro differentiation (cell-to-cell interactions, medium composition, cell-support substrate) are also discussed

    Gefitinib, an EGFR Tyrosine Kinase inhibitor, Prevents Smoke-Mediated Ciliated Airway Epithelial Cell Loss and Promotes Their Recovery

    No full text
    Cigarette smoke exposure is a major health hazard. Ciliated cells in the epithelium of the airway play a critical role in protection against the noxious effects of inhaled cigarette smoke. Ciliated cell numbers are reduced in smokers which weakens host defense and leads to disease. The mechanisms for the loss of ciliated cells are not well understood. The effects of whole cigarette smoke exposure on human airway ciliated ciliated cells were examined using in vitro cultures of normal human bronchial epithelial cells and a Vitrocell® VC 10® Smoking Robot. These experiments showed that whole cigarette smoke causes the loss of differentiated ciliated cells and inhibits differentiation of ciliated cells from undifferentiated basal cells. Furthermore, treatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, Gefitinib, during smoke exposure prevents ciliated cell loss and promotes ciliated cell differentiation from basal cells. Finally, restoration of ciliated cells was inhibited after smoke exposure was ceased but was enhanced by Gefitinib treatment. These data suggest that inhibition of EGFR activity may provide therapeutic benefit for treating smoke related diseases
    corecore