15 research outputs found

    Innate Immune Function in Placenta and Cord Blood of Hepatitis C – Seropositive Mother-Infant Dyads

    Get PDF
    Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in ∼80% of cases following exposure, the rate of mother-to-child transmission (2–6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and γδ-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells

    From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?

    Get PDF
    The temporal coincidence of sleep spindles and spike-and-wave discharges (SWDs) in patients with idiopathic generalized epilepsies, together with the transformation of spindles into SWDs following intramuscular injection of the weak GABAA receptor (GABAAR) antagonist, penicillin, in an experimental model, brought about the view that SWDs may represent ‘perverted’ sleep spindles. Over the last 20 years, this hypothesis has received considerable support, in particular by in vitro studies of thalamic oscillations following pharmacological/genetic manipulations of GABAARs. However, from a critical appraisal of the evidence in absence epilepsy patients and well-established models of absence epilepsy it emerges that SWDs can occur as frequently during wakefulness as during sleep, with their preferential occurrence in either one of these behavioural states often being patient dependent. Moreover, whereas the EEG expression of both SWDs and sleep spindles requires the integrity of the entire cortico-thalamo-cortical network, SWDs initiates in cortex while sleep spindles in thalamus. Furthermore, the hypothesis of a reduction in GABAAR function across the entire cortico-thalamo-cortical network as the basis for the transformation of sleep spindles into SWDs is no longer tenable. In fact, while a decreased GABAAR function may be present in some cortical layers and in the reticular thalamic nucleus, both phasic and tonic GABAAR inhibitions of thalamo-cortical neurons are either unchanged or increased in this epileptic phenotype. In summary, these differences between SWDs and sleep spindles question the view that the EEG hallmark of absence seizures results from a transformation of this EEG oscillation of natural sleep

    Regulatory T cells and their role in rheumatic diseases: a potential target for novel therapeutic development

    Get PDF
    Regulatory T cells have an important role in limiting immune reactions and are essential regulators of self-tolerance. Among them, CD4+CD25high regulatory T cells are the best-described subset. In this article, we summarize current knowledge on the phenotype, function, and development of CD4+CD25high regulatory T cells. We also review the literature on the role of these T cells in rheumatic diseases and discuss the potential for their use in immunotherapy

    Mammalian sex determination—insights from humans and mice

    Get PDF
    Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models

    High levels of soluble CTLA-4 are present in anti-mitochondrial antibody positive, but not in antibody negative patients with primary biliary cirrhosis.

    No full text
    Primary biliary cirrhosis (PBC) is a chronic autoimmune cholestatic liver disease frequently characterized by anti-mitochondrial autoantibodies (AMA). A minority of patients are AMA-negative. Cytotoxic-T-Lymphocyte-Antigen-4 (CTLA-4) is a surface molecule expressed on activated T-cells delivering a critical negative immunoregulatory signal. A soluble form of CTLA-4 (sCTLA-4) has been detected at high concentrations in several autoimmune diseases, and its possible functional meaning has been suggested. We aimed to evaluate sCTLA-4 concentration in sera of patients with PBC and to correlate it to immunological abnormalities associated with the disease. Blood samples were collected from 82 PBC-patients diagnosed according to international criteria (44 AMA-positive/MIT3-positive and 38 AMA-negative-MIT3-negative), and 65 controls. sCTLA-4 levels were evaluated by ELISA and Western blot. Increased sCTLA-4 concentrations were found in all AMA-positive PBC-patients, but in none of the AMA-negative ones, nor in normal controls or in controls with unrelated liver diseases. sCTLA-4 presence was associated with autoantibodies against MIT3, but not with nuclear autoantibodies (sp100, gp210). This is the first study to demonstrate that levels of sCTLA-4 are elevated in sera of PBC patients. However, they are clearly restricted to patients with AMA positivity, suggesting an immunological difference with respect to AMA-negative ones

    Towards systemic sclerosis and away from primary biliary cirrhosis: The case of PTPN22

    No full text
    Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized by immune-mediated destruction of the small and medium size intrahepatic bile ducts. PBC patients often have concomitant autoimmune diseases, which are most often autoimmune thyroid disease, as well as Sicca syndrome. Occasionally, some PBC patients will also have systemic sclerosis of the limited cutaneous type (lcSSc). Conversely, up to one-fourth of SSc patients are positive for antimitochondrial antibody, the serologic hallmark of PBC. It is also common for SSc patients to have concomitant autoimmune disease, which may include PBC in rare cases. This has led to speculation of shared environmental and/or genetic factors, which lead to the development of PBC in SSc patients and vice versa. Recent genetic studies have revealed associations with several genes in both SSc and PBC. PTPN22 is one gene that has been associated with SSc, but not with PBC. It may be argued that some SSc patients with a particular genotype, which shares genes found in both conditions may develop PBC. Likewise, particular genes such as PTPN22 may infer susceptibility to SSc alone. The presence of PTPN22 may also contribute to the development of SSc in PBC patients. The lack of a large number of overlapping genes may, in part, explain the relative rarity of PBC with SSc and vice versa. This review will examine the literature surrounding the genetic associations of PBC and SSc, and the role of PTPN22 in particular. © 2011 Springer-Verlag
    corecore