8 research outputs found

    Processing and industrial applications of sustainable nanocomposites containing nanofillers

    No full text
    This book presents emerging economical and environmentally friendly polymer composites that are free of the side effects observed in traditional composites. It focuses on eco-friendly composite materials using granulated cork, a by-product of the cork industry; cellulose pulp from the recycling of paper residues; hemp fibers; and a range of other environmentally friendly materials procured from various sources. The book presents the manufacturing methods, properties and characterization techniques of these eco-friendly composites. The respective chapters address classical and recent aspects of eco-friendly polymer composites and their chemistry, along with practical applications in the biomedical, pharmaceutical, automotive and other sectors. Topics addressed include the fundamentals, processing, properties, practicality, drawbacks and advantages of eco-friendly polymer composites. Featuring contributions by experts in the field with a variety of backgrounds and specialties, the book will appeal to researchers and students in the fields of materials science and environmental science. Moreover, it fills the gap between research work in the laboratory and practical applications in related industries.Scopu

    Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation

    No full text
    The recent surge in graphene research has stimulated interest in the investigation of various two-dimensional (2D) nanomaterials, including 2D boron nitride (BN) nanostructures. Among these, hexagonal boron nitride nanosheets (h-BNNs; also known as white graphene, as their structure is similar to that of graphene) have emerged as potential nanofillers for preparing thermally conductive composites. In this work, hexagonal boron nitride nanoparticles (h-BNNPs) approximately 70 nm in size were incorporated into a polyvinylidene fluoride (PVDF) matrix with different loadings (0–25 wt.%). The PVDF/h-BNNP nanocomposites were prepared by a solution blending technique and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), polarized optical microscopy (POM) and scanning electron microscopy (SEM). In addition, the thermal conductivity and dielectric properties of the nanocomposites were investigated. The incorporation of h-BNNPs in the PVDF matrix resulted in enhanced thermal conductivity. The highest value, obtained at 25 wt.% h-BNNP loading, was 2.33 W/mK, which was five times that of the neat PVDF (0.41 W/mK). The thermal enhancement factor (TEF) at 5 wt.% h-BNNP loading was 78%, increasing to 468% at 25 wt.% h-BNNP loading. The maximum dielectric constant of approximately 36.37 (50Hz, 150 °C) was obtained at 25 wt.% h-BNNP loading, which was three times that of neat PVDF (11.94) at the same frequency and temperature. The aforementioned results suggest that these multifunctional and high-performance nanocomposites hold great promise for application in electronic encapsulation.Scopu

    Cutaneous tuberculosis

    No full text

    Flexible, biodegradable and recyclable solar cells: a review

    No full text
    corecore