1,538 research outputs found

    A Paclitaxel-Eluting Stent for the Prevention of Coronary Restenosis

    Get PDF
    Background Intimal hyperplasia and resulting restenosis limit the efficacy of coronary stenting. We studied a coronary stent coated with the antiproliferative agent paclitaxel as a means of preventing restenosis. Methods We conducted a multicenter, randomized, controlled, triple-blind study to evaluate the ability of a paclitaxel-eluting stent to inhibit restenosis. At three centers, 177 patients with discrete coronary lesions (<15 mm in length, 2.25 to 3.5 mm in diameter) underwent implantation of paclitaxel-eluting stents (low dose, 1.3 µg per square millimeter, or high dose, 3.1 µg per square millimeter) or control stents. Antiplatelet therapies included aspirin with ticlopidine (120 patients), clopidogrel (18 patients), or cilostazol (37 patients). Clinical follow-up was performed at one month and four to six months, and angiographic follow-up at four to six months. Results Technical success was achieved in 99 percent of the patients (176 of 177). At follow-up, the high-dose group, as compared with the control group, had significantly better results for the degree of stenosis (mean [±SD], 14±21 percent vs. 39±27 percent; P<0.001), late loss of luminal diameter (0.29±0.72 mm vs. 1.04±0.83 mm, P<0.001), and restenosis of more than 50 percent (4 percent vs. 27 percent, P<0.001). Intravascular ultrasound analysis demonstrated a dose-dependent reduction in the volume of intimal hyperplasia (31, 18, and 13 mm3, in the high-dose, low-dose, and control groups, respectively). There was a higher rate of major cardiac events in patients receiving cilostazol than in those receiving ticlopidine or clopidogrel. Among patients receiving ticlopidine or clopidogrel, event-free survival was 98 percent and 100 percent in the high-dose and control groups, respectively, at one month, and 96 percent in both at four to six months. Conclusions Paclitaxel-eluting stents used with conventional antiplatelet therapy effectively inhibit restenosis and neointimal hyperplasia, with a safety profile similar to that of standard stents.published_or_final_versio

    Chemico-calorimetric analysis of amorphous granules manufactured via continuous granulation process

    Get PDF
    The current study explores the first case of the implementation of solution calorimetry (SolCal) in order to determine the amorphous content of crystalline benzoyl-methoxy-methylindol-acetic acid (BMA)—a model poorly soluble drug, in the amorphous granules prepared via single-step continuous twin-screw dry granulations (TSG). Amorphous magnesium aluminometasilicate (Neusilin®) (US2) was used as a novel inorganic carrier via a TwinLab 10 mm twin-screw extruder. The BMA/US2 blends were processed at 180 °C and varying drug: carrier ratios of 1:4, 1:2.5 and 1:1 (w/w). Physico-chemical characterisation conducted via SEM, DSC and XRPD showed amorphous state of the drug in all granulated formulations. Reverse optical microscopy revealed a meso-porous structure of US2 in which the drug particles are adsorbed and/or entrapped within the porous network of the carrier. This phenomenon can be the underlying reason for the increase of the amorphous content in the extruded granules. Solution calorimetry (SolCal) study revealed amorphous content of the drug in all formulations quite precisely, whereas the dynamic vapour sorption (DVS) analysis complemented the results from SolCal. Furthermore, an attempt has been made for the first time to interrelate the findings from the SolCal to that of the release of the drug from the amorphous granules. It can be concluded that SolCal can be used as a novel technique to precisely quantify and interrelate the amorphous content to its physico-chemical performances such as drug release from the granulated formulations processed via TS

    Immediate Surgical Repositioning Following Intrusive Luxation: A Case Report and Review of the Literature

    Get PDF
    This report presents a case of severe intrusive luxation of mature maxillary lateral incisor in a 10-year-old boy. The intruded tooth was immediately repositioned (surgical extrusion) and splinted within 2 h following injury. Tetracycline therapy was initiated at the time of repositioning and maintained for 10 days. Pulp removal and calcium hydroxide treatment of the root canal was carried out after repositioning. Splint was removed 1 month later. Definitive root canal treatment with gutta percha was accomplished at the second month recall. Clinical and radiographic examination 28 months after the surgical extrusion revealed satisfactory apical and periodontal healing

    Macroscopic transport by synthetic molecular machines

    Get PDF
    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.

    Area-Wide Suppression of the Mediterranean Fruit Fly, Ceratitis capitata, and the Oriental Fruit Fly, Bactrocera dorsalis, in Kamuela, Hawaii

    Get PDF
    The United States Department of Agriculture's Agricultural Research Service initiated an area-wide fruit fly management program in Hawaii in 2000. The first demonstration site was established in Kamuela, Hawaii, USA. This paper documents suppression of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a 40 km2 area containing urban, rural and agricultural zones during a 6 year period. The suppression techniques included sanitation, GF-120 NF Naturalyte Fruit Fly Bait sprays, male annihilation, Biolure® traps, and parasitoids against C. capitata and B. dorsalis. In addition, small numbers of sterile males were released against B. dorsalis. Substantial reductions in fruit infestation levels were achieved for both species (90.7 and 60.7% for C. capitata and B. dorsalis, respectively) throughout the treatment period. Fruit fly captures in the 40 km2 treatment area were significantly lower during the 6 year period than those recorded in three non-treated areas. The strategy of combining suppression techniques in an area-wide approach is discussed

    Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration

    Get PDF
    Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies

    Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating

    Get PDF
    In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS
    corecore