49 research outputs found

    Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors

    Get PDF
    Chronic exposure to drugs of abuse or stress regulates transcription factors, chromatin-modifying enzymes and histone post-translational modifications in discrete brain regions. Given the promiscuity of the enzymes involved, it has not yet been possible to obtain direct causal evidence to implicate the regulation of transcription and consequent behavioral plasticity by chromatin remodeling that occurs at a single gene. We investigated the mechanism linking chromatin dynamics to neurobiological phenomena by applying engineered transcription factors to selectively modify chromatin at a specific mouse gene in vivo. We found that histone methylation or acetylation at the Fosb locus in nucleus accumbens, a brain reward region, was sufficient to control drug- and stress-evoked transcriptional and behavioral responses via interactions with the endogenous transcriptional machinery. This approach allowed us to relate the epigenetic landscape at a given gene directly to regulation of its expression and to its subsequent effects on reward behavior

    A Differential Role for Macropinocytosis in Mediating Entry of the Two Forms of Vaccinia Virus into Dendritic Cells

    Get PDF
    Vaccinia virus (VACV) is being developed as a recombinant viral vaccine vector for several key pathogens. Dendritic cells (DCs) are specialised antigen presenting cells that are crucial for the initiation of primary immune responses; however, the mechanisms of uptake of VACV by these cells are unclear. Therefore we examined the binding and entry of both the intracellular mature virus (MV) and extracellular enveloped virus (EV) forms of VACV into vesicular compartments of monocyte-derived DCs. Using a panel of inhibitors, flow cytometry and confocal microscopy we have shown that neither MV nor EV binds to the highly expressed C-type lectin receptors on DCs that are responsible for capturing many other viruses. We also found that both forms of VACV enter DCs via a clathrin-, caveolin-, flotillin- and dynamin-independent pathway that is dependent on actin, intracellular calcium and host-cell cholesterol. Both MV and EV entry were inhibited by the macropinocytosis inhibitors rottlerin and dimethyl amiloride and depended on phosphotidylinositol-3-kinase (PI(3)K), and both colocalised with dextran but not transferrin. VACV was not delivered to the classical endolysosomal pathway, failing to colocalise with EEA1 or Lamp2. Finally, expression of early viral genes was not affected by bafilomycin A, indicating that the virus does not depend on low pH to deliver cores to the cytoplasm. From these collective results we conclude that VACV enters DCs via macropinocytosis. However, MV was consistently less sensitive to inhibition and is likely to utilise at least one other entry pathway. Definition and future manipulation of these pathways may assist in enhancing the activity of recombinant vaccinia vectors through effects on antigen presentation

    Amplified and selective assay of collagens by enzymatic and fluorescent reactions

    Get PDF
    Sensitive and selective assay of collagen is of substantial importance to the diagnostic study of health- and aging-related failures. In this paper, we describe a highly specific and sensitive method for the assay of whole collagens in biological samples using a novel fluorogenic reagent, 3,4- dihydroxyphenylacetic acid (3,4-DHPAA). The 3,4-DHPAA reagent can selectively detectN-terminal Gly-containing peptides (NGPs) in the presence of sodium borate and NaIO4. Under conditions optimized, this assay format for collagen, termed 3,4-DHPAA assay method showed a good linear relationship between the amplified FL signals and the collagen concentrations from 0.18 to 12 μg/ml. Therefore the sensitive determination of intracellular collagens in cheek tissue and HeLa cells was individually possible without any separation protocol. The dual recognitions of the collagens in the samples could be performed by the enzymatic digestion and the FL reaction. The proposed assay method enables the determination facile, specific, sensitive and quantitative for biogenic collagens
    corecore