7 research outputs found

    Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes

    No full text
    Andrea Rónavári,1,2 Nóra Igaz,2 Mohana Krishna Gopisetty,2 Bettina Szerencsés,3 Dávid Kovács,2 Csaba Papp,3 Csaba Vágvölgyi,3 Imre Miklós Boros,2,4 Zoltán Kónya,1,5 Mónika Kiricsi,2 Ilona Pfeiffer3 1Department of Applied and Environmental Chemistry, 2Department of Biochemistry and Molecular Biology, 3Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, 4Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 5MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary Background: Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nano-sized structures with unique antimicrobial properties. In line with this, our aim was to generate silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to study the effect of the obtained nanoparticles on cutaneous mycosis causing fungi and on human keratinocytes. Methods: Cell-free extract of the red yeast Phaffia rhodozyma proved to be suitable for nanoparticle preparation and the generated AgNPs and AuNPs were characterized by transmission electron microscopy, dynamic light scattering and X-ray powder diffraction. Results: Antifungal studies demonstrated that the biosynthesized silver particles were able to inhibit the growth of several opportunistic Candida or Cryptococcus species and were highly potent against filamentous Microsporum and Trichophyton dermatophytes. Among the tested species only Cryptococcus neoformans was susceptible to both AgNPs and AuNPs. Neither AgNPs nor AuNPs exerted toxicity on human keratinocytes. Conclusion: Our results emphasize the therapeutic potential of such biosynthesized nanoparticles, since their biocompatibility to skin cells and their outstanding antifungal performance can be exploited for topical treatment and prophylaxis of superficial cutaneous mycosis. Keywords: antifungal activity, biological synthesis, dermatophytes, opportunistic pathogenic yeasts, silver nanoparticles, toxicit

    Stem cell fate in cancer growth, progression and therapy resistance

    No full text
    Although we have come a long way in our understanding of the signals that drive cancer growth, and how these signals can be targeted, effective control of this disease remains a key scientific and medical challenge. The therapy resistance and relapse that are commonly seen are driven in large part by the inherent heterogeneity within cancers that allows drugs to effectively eliminate some, but not all, malignant cells. Here, we focus on the fundamental drivers of this heterogeneity by examining emerging evidence that shows that these traits are often controlled by the disruption of normal cell fate and aberrant adoption of stem cell signals. We discuss how undifferentiated cells are preferentially primed for transformation and often serve as the cell of origin for cancers. We also consider evidence showing that activation of stem cell programmes in cancers can lead to progression, therapy resistance and metastatic growth and that targeting these attributes may enable better control over a difficult disease

    Green Synthesis of Nanoparticles and Their Application in Cancer Therapy

    No full text
    none6simixedValeria De Matteis; Mariafrancesca Cascione; Loris Rizzello; Eva Liatsi-Douvitsa; Azzurra Apriceno; Rosaria RinaldiDE MATTEIS, Valeria; Cascione, Mariafrancesca; Rizzello, Loris; Liatsi-Douvitsa, Eva; Apriceno, Azzurra; Rinaldi, Rosari
    corecore