56 research outputs found

    Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells

    Get PDF
    Background: Constitutive activation of signal transducer and activator of transcription signalling 3 (STAT3) has been linked with survival, proliferation and angiogenesis in a wide variety of malignancies including hepatocellular carcinoma (HCC). Methods: We evaluated the effect of lupeol on STAT3 signalling cascade and its regulated functional responses in HCC cells. Results: Lupeol suppressed constitutive activation of STAT3 phosphorylation at tyrosine 705 residue effectively in a dose- and time-dependent manner. The phosphorylation of Janus-activated kinases (JAKs) 1 and 2 and Src was also suppressed by lupeol. Pervanadate treatment reversed the downregulation of phospho-STAT3 induced by lupeol, thereby indicating the involvement of a phosphatase. Indeed, we observed that treatment with lupeol increased the protein and mRNA levels of SHP-2, and silencing of SHP-2 abolished the inhibitory effects of lupeol on STAT3 activation. Treatment with lupeol also downregulated the expression of diverse STAT3-regulated genes and decreased the binding of STAT3 to VEGF promoter. Moreover, the proliferation of various HCC cells was significantly suppressed by lupeol, being associated with substantial induction of apoptosis. Depletion of SHP-2 reversed the observed antiproliferative and pro-apoptotic effects of lupeol. Conclusions: Lupeol exhibited its potential anticancer effects in HCC through the downregulation of STAT3-induced pro-survival signalling cascade

    Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions.

    Get PDF
    Inflammatory cytokines are commonly elevated in acute depression and are associated with resistance to monoaminergic treatment. To examine the potential role of cytokines in the pathogenesis and treatment of depression, we carried out a systematic review and meta-analysis of antidepressant activity of anti-cytokine treatment using clinical trials of chronic inflammatory conditions where depressive symptoms were measured as a secondary outcome. Systematic search of the PubMed, EMBASE, PsycINFO and Cochrane databases, search of reference lists and conference abstracts, followed by study selection process yielded 20 clinical trials. Random effect meta-analysis of seven randomised controlled trials (RCTs) involving 2370 participants showed a significant antidepressant effect of anti-cytokine treatment compared with placebo (standardised mean difference (SMD)=0.40, 95% confidence interval (CI), 0.22-0.59). Anti-tumour necrosis factor drugs were most commonly studied (five RCTs); SMD=0.33 (95% CI; 0.06-0.60). Separate meta-analyses of two RCTs of adjunctive treatment with anti-cytokine therapy and eight non-randomised and/or non-placebo studies yielded similar small-to-medium effect estimates favouring anti-cytokine therapy; SMD=0.19 (95% CI, 0.00-0.37) and 0.51 (95% CI, 0.34-0.67), respectively. Adalimumab, etanercept, infliximab and tocilizumab all showed statistically significant improvements in depressive symptoms. Meta-regression exploring predictors of response found that the antidepressant effect was associated with baseline symptom severity (P=0.018) but not with improvement in primary physical illness, sex, age or study duration. The findings indicate a potentially causal role for cytokines in depression and that cytokine modulators may be novel drugs for depression in chronically inflamed subjects. The field now requires RCTs of cytokine modulators using depression as the primary outcome in subjects with high inflammation who are free of other physical illnesses.GMK is supported by a Clinical Lecturer Starter Grant from the Academy of Medical Sciences, UK (grant no. 80354) and a Gosling Fellowship from the Royal College of Psychiatrists, UK (2015). GMK also received funding support from the Wellcome Trust 094790/Z/10/Z). PBJ acknowledges grant sup port from the Wellcome Trust (095844/Z/11/Z & 088869/Z/09/Z) and NIHR (RP-PG-0606-1335, Cambridge Biomedical Research Centre and CLAHRC East of England). RD has received grants from the National Institute of Neurological Diseases and Stroke of the National Institutes of Health (grants R01 NS073939; R01 NS074999).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/mp.2016.16

    Molecular Insights into Reprogramming-Initiation Events Mediated by the OSKM Gene Regulatory Network

    Get PDF
    Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC (OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments confirmed that upon viral transduction, the immediate response is innate immunity, which induces free radical generation, oxidative DNA damage, p53 activation, senescence, and apoptosis, ultimately leading to a reduction in the reprogramming efficiency. Conversely, nucleofection of OSKM plasmids does not elicit the same cellular stress, suggesting viral response as an early reprogramming roadblock. Additional initiation events include the activation of surface markers associated with pluripotency and the suppression of epithelial-to-mesenchymal transition. Furthermore, reconstruction of an OSKM interaction network highlights intermediate path nodes as candidates for improvement intervention. Overall, the results suggest three strategies to improve reprogramming efficiency employing: 1) anti-inflammatory modulation of innate immune response, 2) pre-selection of cells expressing pluripotency-associated surface antigens, 3) activation of specific interaction paths that amplify the pluripotency signal

    Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle

    Get PDF
    Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle
    corecore