2,965 research outputs found

    All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering

    Get PDF
    Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schr\"odinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain projective measurement by Alice so that Bob's normalized conditional states can be regarded as two different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum states which do not violate any previously known steering inequality but are indeed steerable. Our method offers advantages over the existing methods for experimentally testing steerability, and sheds new light on the asymmetric steering problem.Comment: 7 pages, 2 figures. Accepted in Sci. Re

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    Black Hole Models of Quasars

    Get PDF
    Observations of active galactic nuclei are interpreted in terms of a theoretical model involving accretion onto a massive black hole. Optical quasars and Seyfert galaxies are associated with holes accreting near the Eddington rate and radio galaxies with sub-critical accretion. It is argued that magnetic fields are largely responsible for extracting energy and angular momentum from black holes and disks. Recent studies of electron-positron pair plasmas and their possible role in establishing the emergent X-ray spectrum are reviewed. The main evolutionary properties of active galactic nuclei can be interpreted in terms of a simple model in which black holes accrete gas at a rate dictated by the rate of gas supply which decreases with cosmic time. It may be worth searching for eclipsing binary black holes in lower power Seyferts

    Dentin dysplasia type I: a challenge for treatment with dental implants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dentin dysplasia type I is characterized by a defect of dentin development with clinical normal appearance of the permanent teeth but no or only rudimentary root formation. Early loss of all teeth and concomitant underdevelopment of the jaws are challenging for successful treatment with dental implants.</p> <p>Methods</p> <p>A combination of sinus lifting and onlay bone augmentation based on treatment planning using stereolithographic templates was used in a patient with dentin dysplasia type I to rehabilitate the masticatory function.</p> <p>Results</p> <p>(i) a predisposition for an increased and accelerated bone resorption was observed in our patient, (ii) bone augmentation was successful using a mixture of allogenic graft material with autogenous bone preventing fast bone resorption, (iii) surgical planning, based on stereolithographic models and surgical templates, facilitated the accurate placement of dental implants.</p> <p>Conclusion</p> <p>Bony augmentation and elaborate treatment planning is helpful for oral rehabilitation of patients with dentin dysplasia type I.</p

    Argumentation in school science : Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning

    Get PDF
    The value of argumentation in science education has become internationally recognised and has been the subject of many research studies in recent years. Successful introduction of argumentation activities in learning contexts involves extending teaching goals beyond the understanding of facts and concepts, to include an emphasis on cognitive and metacognitive processes, epistemic criteria and reasoning. The authors focus on the difficulties inherent in shifting a tradition of teaching from one dominated by authoritative exposition to one that is more dialogic, involving small-group discussion based on tasks that stimulate argumentation. The paper builds on previous research on enhancing the quality of argument in school science, to focus on how argumentation activities have been designed, with appropriate strategies, resources and modelling, for pedagogical purposes. The paper analyses design frameworks, their contexts and lesson plans, to evaluate their potential for enhancing reasoning through foregrounding the processes of argumentation. Examples of classroom dialogue where teachers adopt the frameworks/plans are analysed to show how argumentation processes are scaffolded. The analysis shows that several layers of interpretation are needed and these layers need to be aligned for successful implementation. The analysis serves to highlight the potential and limitations of the design frameworks

    Measurements on the reality of the wavefunction

    Full text link
    Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it an element of reality? Recent no-go theorems argued that if there was any underlying reality to start with, the wavefunction must be real. However, that conclusion relied on debatable assumptions, without which a partial knowledge interpretation can be maintained to some extent. A different approach is to impose bounds on the degree to which knowledge interpretations can explain quantum phenomena, such as why we cannot perfectly distinguish non-orthogonal quantum states. Here we experimentally test this approach with single photons. We find that no knowledge interpretation can fully explain the indistinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that some underlying reality exists, our results strengthen the view that the entire wavefunction should be real. The only alternative is to adopt more unorthodox concepts such as backwards-in-time causation, or to completely abandon any notion of objective reality.Comment: 7 pages, 4 figure
    • 

    corecore