44 research outputs found

    Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils

    Full text link
    Ā© 2016 Elsevier Ltd. Ecophysiological studies of remnant woodlands in saline environments are scarce. We investigated seasonal fluctuations in soil water and salinity together with leaf and branch traits (area-based maximum assimilation (Amax), foliar nitrogen, specific leaf area (SLA) and Huber value (Hv)) and sap velocities of Eucalyptus macrorhyncha at four semi-arid sites in south-eastern Australia. Summer and winter soil salinities (10 cm depth) were 15-35 dS m-1 and 8-10 dS m-1 respectively. Gravimetric soil water content in the upper 20 cm was 2-5% in summer and 7-23% in winter, resulting in a significant inverse correlation between soil water and soil salinity. We found significant correlations between soil conditions and plant traits and function across seasons. Soil water content was significantly correlated with foliar N, SLA, Hv and maximum sap velocity while soil salinity was significantly correlated with Amax, Hv and maximum sap velocity. Correlations indicate co-variation of soil conditions and plant physiology in response to environmental conditions such as solar radiation and vapour pressure deficit (D). E. macrorhyncha tolerates the dual stresses of high salinity and low soil water during summer. While the plants appeared unhealthy, our data show that remnant vegetation can remain functional even in close proximity to saline scalds

    Long term trends of stand transpiration in a remnant forest during wet and dry years

    Full text link
    Daily and annual rates of stand transpiration in a drought year and a non-drought year are compared in order to understand the adaptive responses of a remnant woodland to drought and predict the effect of land use change. Two methods were used to estimate stand transpiration. In the first, the ratio of sap velocity of a few trees measured for several hundred days to the mean sap velocity of many trees measured during brief sampling periods (generally 6-7 trees for 5 or 6 days), called the Esv method is used to scale temporally from the few intensive study periods. The second method used was the Penman-Monteith (P-M) equation (called the EPM method). Weather variables and soil moisture were used to predict canopy conductance, which in turn was used to predict daily and annual stand transpiration. Comparisons of daily transpiration estimated with the two methods showed larger values for the EPM method during a drought year and smaller values for the EPM when the rainfall was above average. Generally, though, annual estimates of stand transpiration were similar using the two methods. The Esv method produced an estimate of 318 mm (61% of rainfall) in the drought year and 443 mm (42%) in the year having above average rainfall. The EPM method estimated stand transpiration as 379 mm (73%) and 398 mm (37%), respectively, for the two years. Both estimates of annual stand transpiration demonstrated that the remnant forest showed resilience to an extreme and long-term drought. More importantly, the annual estimates showed that in dry years a larger proportion of rainfall was used as transpiration, and groundwater recharge was absent but in years with above average rainfall recharge was significantly increased. Changes in leaf area index were minimal between years and changes in stomatal conductance were the dominant mechanism for adapting to the drought. The remnant forest rapidly responded to increased water availability after the drought through a new flush of leaves and increased stomatal conductance. Ā© 2007 Elsevier B.V. All rights reserved

    Fine Root Biomass and Its Relationship to Evapotranspiration in Woody and Grassy Vegetation Covers for Ecological Restoration of Waste Storage and Mining Landscapes

    Full text link
    Production and distribution of fine roots (ā‰¤2.0 mm diameter) are central to belowground ecological processes. This is especially true where vegetation serves as a pump to prevent saturation of soil and possible drainage of excess water into or from potentially toxic waste material stored underground or in mounds aboveground. In this study undertaken near Sydney in Australia, we determined fine root biomass and evapotranspiration (ET) on a waste disposal site restored with either a 15-year-old grass sward or plantations of mixed woody species that were either 5 years old (plantation-5) with a vigorous groundcover of pasture legumes and grasses, or 3 years old (plantation-3) with sparse groundcover. These sites were compared with nearby remnant woodland; all four were located within 0.5-km radius at the same site. Ranking of fine root biomass was in the order woodland (12.3 Mg ha -1) > plantation-5 (8.3 Mg ha -1) > grass (4.9 Mg ha -1) > plantation-3 (1.2 Mg ha -1) and was not correlated with nutrient contents in soil or plants, but reflected the form and age of the vegetation covers. Trends in root length density (RLD) and root area index (RAI) followed those in root biomass, but the differences in RAI were larger than those in biomass amongst the vegetation covers. Annual ET in the dry year of 2009 was similar in the three woody vegetation covers (652-683 mm) and was at least 15% larger than for the grass (555 mm), which experienced restrained growth in winter and periodic mowing. This resulted in drainage from the grass cover while there was no drainage from any of the woody vegetation covers. In plantation-5, root biomass, RAI and RLD were reduced in the rain shadow side of the tree rows. Similarly, the amount and depth of rooting in the groundcover were reduced close to the trees compared to midway between rows. Differences in the root variables were larger than those in ET, which suggested that more roots were produced than were needed for water uptake and/or presence of considerable amounts of necromass. We conclude that vegetation covers, such as plantation-5 consisting of widely spaced trees and a heavy groundcover containing winter-active pasture legumes, will promote year-round water-use with a reduced risk of deep rooting that could breach buried wastes. This function could be sustained through progressive thinning of trees to account for not more than 25% of the whole canopy cover; this will minimize competition for limited soil-water and thereby constrain deep rooting as vegetation ages and attains climax. Ā© 2011 Springer Science+Business Media, LLC

    Ecosystem services: An ecophysiological examination

    Full text link
    This review aims to discuss ecosystem services, provide illustrative case studies at catchment and local scales and present future research needs. This review discusses the following: (1) Ecosystem services (ES) are those goods and services that are provided by or are attributes of ecosystems that benefit humans. Examples of ES include the timber derived from a forest, the prevention of soil and coastal erosion by vegetation and the amelioration of dryland salinity through prevention of rises in the water table by trees. The provision of ES globally is in decline because of a lack of awareness of the total economic value of ES in the public, policy and political fora. (2) Providing a scientific understanding of the relationships among ecosystem structure, function and provision of ES, plus determining actual economic value of ES, are the central challenges to environmental scientists (including triple-bottom-line economists). (3) Some ES are widely dispersed throughout many different ecosystems. Carbon accumulation in trees and the contribution of biodiversity to ES provision are two examples of highly dispersed attributes common to many ecosystems. In contrast, other ES are best considered within the context of a single defined ecosystem (although they may occur in other ecosystems too). Mangroves as 'nursery' sites for juvenile fish is one example. (4) Examples of catchment-scale and local-scale provision of ES are discussed, along with future research issues for the nexus between ES and environmental sciences. Ā© CSIRO 2005

    Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin

    Full text link
    Ā© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Drought-induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross-biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi-arid environments, to drought under ambient and elevated CO 2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid-zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome-specific responses that partially depended on species climate-of-origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change

    Interactive effects of elevated CO <inf>2</inf> and drought on nocturnal water fluxes in Eucalyptus saligna

    Full text link
    Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO 2 (elevated [CO 2]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO 2] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J s) and leaf area (E t) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J s and E t were observed during the severe drought period in the dry treatment under elevated [CO 2], but not during moderate- and post-drought periods. Elevated [CO 2] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J s,r), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J s,c). Elevated [CO 2] wet (EW) trees exhibited higher J s,r than ambient [CO 2] wet trees (AW) indicating greater water flux in elevated [CO 2] under well-watered conditions. However, under drought conditions, elevated [CO 2] dry (ED) trees exhibited significantly lower J s,r than ambient [CO 2] dry trees (AD), indicating less water flux during stem recharge under elevated [CO 2]. J s,c did not differ between ambient and elevated [CO 2]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J s,r and had its greatest impact on J s,r at high D in ambient [CO 2]. Our results suggest that elevated [CO 2] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO 2] affected J s,r, it did not affect day-time water flux in wet soil, suggesting that the responses of J s,r to environmental factors cannot be directly inferred from day-time patterns. Changes in J s,r are likely to influence pre-dawn leaf water potential, and plant responses to water stress. Nocturnal fluxes are clearly important for predicting effects of climate change on forest physiology and hydrology. Ā© 2011 The Author. Published by Oxford University Press. A ll rights reserved

    Daily, seasonal and annual patterns of transpiration from a stand of remnant vegetation dominated by a coniferous Callitris species and a broad-leaved Eucalyptus species

    Full text link
    Quantifying water use of native vegetation is an important contribution to understanding landscape ecohydrology. Few studies provide long-term (more than one growing season) estimates of water use and even fewer quantify interseasonal and interannual variation in transpiration. Globally, changes in land use are significantly altering landscape ecohydrology, resulting in problems such as dryland salinity and excessive groundwater recharge. Estimating stand water use is complex in multispecies forests, due to the differences in relationships among sapwood area, basal area and tree size for co-occurring species. In this article, we examine seasonal and interannual variation in transpiration rate of the tree canopy of two co-occurring species (a conifer Callitris glaucophylla J. Thompson & L.A.S. Johnson and a broad-leaved Eucalyptus crebra F. Muell.) in an open woodland in eastern Australia. Evapotranspiration of understorey species was measured using an open-top chamber, and tree water use was measured using heat-pulse sap flow sensors. Annual stand transpiration was 309 mm in 2003, a year of below average rainfall, and 629 mm in 2004, a year with higher-than-average rainfall. Despite an almost doubling (522 vs. 1062 mm) of annual rainfall between 2003 and 2004, annual tree water use remained a constant fraction (59%) of rainfall, indicative of compensatory mechanisms linking annual rainfall, leaf area index and tree water use. Deep drainage was estimated to be 4% of rainfall (20.8 mm) in 2003 and 2% (21.2 mm) in 2004, indicating that this native woodland was able to minimize deep drainage despite large interannual variability in rainfall. Copyright Ā© Physiologia Plantarum 2006

    Water-use efficiency reflects management practices in Australian olive groves

    No full text
    This study was undertaken to obtain an increased understanding of how current water management practices affect fruit yield in olives ('Olea europaea' L.) in Australian groves, in order to identify opportunities for improvement. We assessed the relationships between seasonal water supply and fruit yield on a range of olive groves that were either irrigated or rain-fed. All the groves experienced inadequate water supply at the start of the season until early Summer (December). This limited the transpiration (T) component of evapotranspiration (ET) and certainly constrained fruit yield. Seasonal averages for the crop coefficient (Kc) ranged between 0.30 for the lightly irrigated groves, to 0.40 for the well-irrigated groves, but fluctuated during the season from as high as 0.7 during wet periods to as low as 0.2 during extended dry periods. Peak rates for daily T in Summer ranged from 1.0 mm (53 l dā»Ā¹ treeā»Ā¹) for the rain-fed grove, to 4.0 mm (196 l dā»Ā¹ treeā»Ā¹) for groves that were regularly irrigated. We observed indications for advective enhancement of T to levels higher than the expected theoretical maxima. Transpiration accounted for between 35 - 67% of seasonal ET in the rain-fed and well-irrigated groves, respectively. Water-use efficiency for fruit was between 3.2 - 32.1 kg haā»Ā¹ mmā»Ā¹ of ET, and between 3.1 - 58.1 kg haā»Ā¹ mmā»Ā¹ of T. These were equivalent to a range of 1.2 - 4.2 g of fruit produced treeā»Ā¹ lā»Ā¹ of water transpired. We found no yield advantage with irrigation that did not raise seasonal ET well above 600 mm, and T above 300 mm. The late commencement of irrigation constrained T in Spring and early Summer, the avoidance of which should increase fruit yield

    The potential impact of dryland salinity on the threatened flora and fauna of New South Wales

    Full text link
    We used digital map overlays in a geographical information system (GIS) to quantify the potential impact of dryland salinity on the threatened flora and fauna of New South Wales (NSW). Geographical areas of conservation priority were identified based on richness of threatened species with distribution records overlapping dryland salinity. Two alternative schemes - Interim Biogeographical Regionalization for Australia (regions) and catchment boundaries (catchments) - were used to subdivide NSW. Sydney Basin, North Coast and South-western Slopes regions - and Hunter, Sydney, Macquarie, Murrumbidgee and Lachlan catchments - were identified as priority areas with more than 10 salinity-overlap species present. Five threatened plant species were identified as priority species due to more than half of their known distributions overlapping areas of dryland salinity. Threatened animal species of most concern had 10-50% of their records overlapping areas of dryland salinity. Our findings demonstrate that landscape exposure to dryland salinity should be used in conjunction with total richness of threatened species for prioritizing conservation of geographical areas with respect to the potential impact of dryland salinity on threatened species
    corecore