486 research outputs found

    Communicating climate risk: a toolkit

    Get PDF
    The Communicating Climate Risk toolkit draws together best practice on the effective communication of climate information from across STEM, social sciences, and arts and humanities. It provides users with insights, recommendations, and tools for all forms of climate-related communication and decision-making, and identifies open problems

    Acceptability of a first-line anti-tuberculosis formulation for children: qualitative data from the SHINE trial.

    Get PDF
    SETTING: We conducted a qualitative exploration into the palatability and acceptability of a novel fixed-dose combination (FDC) anti-tuberculosis drug. This study was nested in the SHINE (Shorter treatment for minimal TB in children) trial, which compares the safety and efficacy of treating non-severe drug-susceptible tuberculosis (TB) with a 6 vs. 4 months anti-tuberculosis regimen in children aged 0-16 years. Participants were recruited in Cape Town, South Africa.OBJECTIVE: To describe the palatability and acceptability of a FDC of rifampicin, isoniazid and pyrazinamide among South African children and their caregivers in the SHINE trial.METHODS: We conducted 20 clinic observations of treatment administration, during which we conducted 16 semi-structured interviews with children and their caregivers. Data were organised thematically to report on experiences with administering and ingesting the FDC.RESULTS: Children and caregivers' experiences varied from delight to disgust. In general, participants said that the FDC compared favourably to other formulations. Pragmatic challenges such as dissolving the FDC and the time required to administer the FDC impeded caregivers' ability to integrate treatment into their daily routines. Drug manipulation was common among caregivers to improve TB treatment administration.CONCLUSION: This novel FDC appears acceptable for children, albeit with practical challenges to administration. Scale-up of FDC use should include supplementary intervention components to support caregivers

    Attenuation of muscle atrophy by an N-terminal peptide of the receptor for proteolysis-inducing factor (PIF)

    Get PDF
    Background: Atrophy of skeletal muscle in cancer cachexia has been attributed to a tumour-produced highly glycosylated peptide called proteolysis-inducing factor (PIF). The action of PIF is mediated through a high-affinity membrane receptor in muscle. This study investigates the ability of peptides derived from the 20 N-terminal amino acids of the receptor to neutralise PIF action both in vitro and in vivo. Methods: Proteolysis-inducing factor was purified from the MAC16 tumour using an initial pronase digestion, followed by binding on DEAE cellulose, and the pronase was inactivated by heating to 80°C, before purification of the PIF using affinity chromatography. In vitro studies were carried out using C2C12 murine myotubes, while in vivo studies employed mice bearing the cachexia-inducing MAC16 tumour. Results: The process resulted in almost a 23?000-fold purification of PIF, but with a recovery of only 0.004%. Both the D- and L-forms of the 20mer peptide attenuated PIF-induced protein degradation in vitro through the ubiquitin-proteosome proteolytic pathway and increased expression of myosin. In vivo studies showed that neither the D- nor the L-peptides significantly attenuated weight loss, although the D-peptide did show a tendency to increase lean body mass. Conclusion: These results suggest that the peptides may be too hydrophilic to be used as therapeutic agents, but confirm the importance of the receptor in the action of the PIF on muscle protein degradation

    Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation

    Get PDF
    The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 205 proteasome α-subunits, two subunits of the 195 regulator MSSI and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin-proteasome proteolytic pathway, as determined by the 'chymotrypsin-like' enzyme activity, proteasome subunits and E2 14k. However, curcumin (150 and 300 mg kg-1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg-1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia

    Increased expression of the ubiquitin – proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-κB

    Get PDF
    Proteolysis-inducing factor (PIF), isolated from a cachexia-inducing murine tumour, has been shown to stimulate protein breakdown in C 2C12 myotubes. The effect was attenuated by the specific proteasome inhibitor lactacystin and there was an elevation of proteasome 'chymotrypsin-like' enzyme activity and expression of 205 proteasome α-subunits at concentrations of PIF between 2 and 16 nM. Higher concentrations of PIF had no effect. The action of PIF was attenuated by eicosapentaenoic acid (EPA) (50 μM). At a concentration of 4 nM, PIF induced a transient decrease in IκBα levels after 30 min incubation, while no effect was seen at 20 nM PIF. The level of IκBα, an NF-κB inhibitory protein, returned to normal after 60 min. Depletion of IκBα from the cytosol was not seen in myotubes pretreated with EPA, suggesting that the NF-κB/IκB complex was stabilised. At concentrations between 2 and 8 nM, PIF stimulated an increased nuclear migration of NF-κB, which was not seen in myotubes pretreated with EPA. The PIF-induced increase in chymotrypsin-like enzyme activity was also attenuated by the NF-κB inhibitor peptide SN50, suggesting that NF-κB may be involved in the PIF-induced increase in proteasome expression. The results further suggest that EPA may attenuate protein degradation induced by PIF, at least partly, by preventing NF-κB accumulation in the nucleus. © 2003 Cancer Research UK

    Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts

    Get PDF
    The phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is frequently deregulated in pancreatic cancers, and is believed to be an important determinant of their biological aggression and drug resistance. NVP-BEZ235 is a novel, dual class I PI3K/mammalian target of rapamycin (mTor) inhibitor undergoing phase I human clinical trials. To simulate clinical testing, the effects of NVP-BEZ235 were studied in five early passage primary pancreatic cancer xenografts, grown orthotopically. These tumours showed activated PKB/Akt, and increased levels of at least one of the receptor tyrosine kinases that are commonly activated in pancreatic cancers. Pharmacodynamic effects were measured following acute single doses, and anticancer effects were determined in separate groups following chronic drug exposure. Acute oral dosing with NVP-BEZ235 strongly suppressed the phosphorylation of PKB/Akt, followed by recovery over 24 h. There was also inhibition of Ser235/236 S6 ribosomal protein and Thr37/46 4E-BP1, consistent with the effects of NVP-BEZ235 as a dual PI3K/mTor inhibitor. Chronic dosing with 45 mg kg−1 of NVP-BEZ235 was well tolerated, and produced significant tumour growth inhibition in three models. These results predict that agents targeting the PI3K/Akt/mTor pathway might have anticancer activity in pancreatic cancer patients, and support the testing of combination studies involving chemotherapy or other molecular targeted agents

    Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus

    Get PDF
    T.J.V. was awarded funding to from the George Koukis Foundation and an Arthritis Research UK Special Strategic Award. The study received support from the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and the Biomedical Research Centre based at Guy’s & St. Thomas’ National Health Service (NHS) Foundation Trust, in partnership with King’s College London. The TwinsUK study was funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013)

    π+\pi^+ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γpnπ+\gamma p \to n \pi^+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure

    Small-molecule targeting of brachyury transcription factor addiction in chordoma.

    Get PDF
    Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers

    Zonal image analysis of tumour vascular perfusion, hypoxia, and necrosis

    Get PDF
    A number of laboratories are utilising both hypoxia and perfusion markers to spatially quantify tumour oxygenation and vascular distributions, and scientists are increasingly turning to automated image analysis methods to quantify such interrelationships. In these studies, the presence of regions of necrosis in the immunohistochemical sections remains a potentially significant source of error. In the present work, frozen MCa-4 mammary tumour sections were used to obtain a series of corresponding image montages. Total vessels were identified using CD31 staining, perfused vessels by DiOC7 staining, hypoxia by EF5/Cy3 uptake, and necrosis by haematoxylin and eosin staining. Our goal was to utilise image analysis techniques to spatially quantitate hypoxic marker binding as a function of distance from the nearest blood vessel. Several refinements to previous imaging methods are described: (1) hypoxia marker images are quantified in terms of their intensity levels, thus providing an analysis of the gradients in hypoxia with increasing distances from blood vessels, (2) zonal imaging masks are derived, which permit spatial sampling of images at precisely defined distances from blood vessels, as well as the omission of necrotic artifacts, (3) thresholding techniques are applied to omit holes in the tissue sections, and (4) distance mapping is utilised to define vascular spacing
    corecore