6 research outputs found

    Association of programmed death ligand-1 (PD-L1) expression with treatment outcomes in patients with BRAF mutation-positive melanoma treated with vemurafenib or cobimetinib combined with vemurafenib.

    No full text
    The prognostic significance of programmed death ligand-1 (PD-L1) on treatment outcomes in patients receiving BRAF with or without MEK inhibitors is not well understood. This retrospective exploratory analysis evaluated the association of tumour PD-L1 expression with progression-free survival (PFS) and overall survival (OS) among 210 patients in the coBRIM trial treated with cobimetinib plus vemurafenib or placebo plus vemurafenib. In the vemurafenib cohort, there was a trend of increased PFS and OS in those with PD-L1+ melanoma, with hazard ratios (HRs; PD-L1+ vs. PD-L1- ) of 0.70 (95% CI, 0.46-1.07) and 0.69 (95% CI, 0.42-1.13) for PFS and OS, respectively. However, in patients treated with cobimetinib plus vemurafenib, a similar trend was not observed with HRs (PD-L1+ versus PD-L1- ) of 1.04 (95% CI, 0.66-1.68) and 0.94 (95% CI, 0.57-1.57) for PFS and OS, respectively. The combination cobimetinib plus vemurafenib appears to overcome the poor prognosis associated with low PD-L1 expression

    Ipatasertib plus paclitaxel for PIK3CA/AKT1/PTEN-altered hormone receptor-positive HER2-negative advanced breast cancer: primary results from cohort B of the IPATunity130 randomized phase 3 trial.

    No full text
    PURPOSE: PI3K/AKT pathway alterations are frequent in hormone receptor-positive (HR+) breast cancers. IPATunity130 Cohort B investigated ipatasertib-paclitaxel in PI3K pathway-mutant HR+ unresectable locally advanced/metastatic breast cancer (aBC). METHODS: Cohort B of the randomized, double-blind, placebo-controlled, phase 3 IPATunity130 trial enrolled patients with HR+ HER2-negative PIK3CA/AKT1/PTEN-altered measurable aBC who were considered inappropriate for endocrine-based therapy (demonstrated insensitivity to endocrine therapy or visceral crisis) and were candidates for taxane monotherapy. Patients with prior chemotherapy for aBC or relapse < 1 year since (neo)adjuvant chemotherapy were ineligible. Patients were randomized 2:1 to ipatasertib (400 mg, days 1-21) or placebo, plus paclitaxel (80 mg/m2, days 1, 8, 15), every 28 days until disease progression or unacceptable toxicity. The primary endpoint was investigator-assessed progression-free survival (PFS). RESULTS: Overall, 146 patients were randomized to ipatasertib-paclitaxel and 76 to placebo-paclitaxel. In both arms, median investigator-assessed PFS was 9.3 months (hazard ratio, 1.00, 95% CI 0.71-1.40) and the objective response rate was 47%. Median paclitaxel duration was 6.9 versus 8.8 months in the ipatasertib-paclitaxel versus placebo-paclitaxel arms, respectively; median ipatasertib/placebo duration was 8.0 versus 9.1 months, respectively. The most common grade ≥ 3 adverse events were diarrhea (12% with ipatasertib-paclitaxel vs 1% with placebo-paclitaxel), neutrophil count decreased (9% vs 7%), neutropenia (8% vs 9%), peripheral neuropathy (7% vs 3%), peripheral sensory neuropathy (3% vs 5%) and hypertension (1% vs 5%). CONCLUSION: Adding ipatasertib to paclitaxel did not improve efficacy in PIK3CA/AKT1/PTEN-altered HR+ HER2-negative aBC. The ipatasertib-paclitaxel safety profile was consistent with each agent's known adverse effects. Trial registration NCT03337724

    Gene Expression Profiling in BRAF-Mutated Melanoma Reveals Patient Subgroups with Poor Outcomes to Vemurafenib That May Be Overcome by Cobimetinib Plus Vemurafenib.

    No full text
    Purpose: The association of tumor gene expression profiles with progression-free survival (PFS) outcomes in patients with BRAFV600-mutated melanoma treated with vemurafenib or cobimetinib combined with vemurafenib was evaluated.Experimental Design: Gene expression of archival tumor samples from patients in four trials (BRIM-2, BRIM-3, BRIM-7, and coBRIM) was evaluated. Genes significantly associated with PFS (P < 0.05) were identified by univariate Cox proportional hazards modeling, then subjected to unsupervised hierarchical clustering, principal component analysis, and recursive partitioning to develop optimized gene signatures.Results: Forty-six genes were identified as significantly associated with PFS in both BRIM-2 (n = 63) and the vemurafenib arm of BRIM-3 (n = 160). Two distinct signatures were identified: cell cycle and immune. Among vemurafenib-treated patients, the cell-cycle signature was associated with shortened PFS compared with the immune signature in the BRIM-2/BRIM-3 training set [hazard ratio (HR) 1.8; 95% confidence interval (CI), 1.3-2.6, P = 0.0001] and in the coBRIM validation set (n = 101; HR, 1.6; 95% CI, 1.0-2.5; P = 0.08). The adverse impact of the cell-cycle signature on PFS was not observed in patients treated with cobimetinib combined with vemurafenib (n = 99; HR, 1.1; 95% CI, 0.7-1.8; P = 0.66).Conclusions: In vemurafenib-treated patients, the cell-cycle gene signature was associated with shorter PFS. However, in cobimetinib combined with vemurafenib-treated patients, both cell cycle and immune signature subgroups had comparable PFS. Cobimetinib combined with vemurafenib may abrogate the adverse impact of the cell-cycle signature. Clin Cancer Res; 23(17); 5238-45. ©2017 AACR
    corecore