7 research outputs found

    Position and variability of complex structures in the central East Antarctic Ice Sheet

    No full text
    Although the flow of the East Antarctic Ice Sheet is well constrained from surface measurements and altimetry, our knowledge of the dynamic processes within the ice sheet remains limited. Recent high-resolution radar data from the Gamburtsev Subglacial Mountains in central East Antarctica reveal a series of anomalous englacial reflectors in the lower half of the ice column that cannot be explained by conventional ice flow. Expanding on previous analyses, we describe the geometrical and morphological features of 12 of these anomalous reflectors. Our description reveals a previously unacknowledged diversity in size, geometry and internal structure of these reflectors. We are able to identify four distinct morphological features: (1) fingers; (2) inclusions; (3) sheets; and (4) folds. The ‘fingers’ and ‘inclusions’ probably form by shear instabilities at the boundary between the reflectors and the surrounding meteoric ice. The ‘sheets’ highlight that basal ice can be uplifted off of the bed and above surrounding meteoric ice, and the ‘folds’ may have formed in local regions of converging flow associated with subglacial topography. The study provides key insights into the rheology, stress and deformational regimes deep within the central East Antarctic Ice Sheet

    Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10-2 M⊙c2 at ˜150 Hz with ˜60 ms duration, and high-energy neutrino emission of 1 051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 ×1 0-2 Mpc-3 yr-1 . We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.status: publishe
    corecore