8 research outputs found

    Aqueous solution behavior of thermosensitive (N-isopropylacrylamide-acrylic acid-ethyl methacrylate) terpolymers

    No full text
    A series of N-isopropylacrylamide (NIPAM)-acrylic acid-ethyl methacrylate terpolymers with varied monomer compositions was prepared by radical polymerization. The solution behavior of these polymers was studied in dilute aqueous solution using spectrophotometry, fluorescence spectroscopy and high-sensitivity differential scanning calorimetry. The results obtained revealed that the lower critical solution temperatures depend strongly on the copolymer composition, solution pH and ionic strength. At a high pH, the ionization of acrylic acid (AA) units leads to an increase in solution cloud points (T-c). Solutions of polymers containing 10% or less of AA display a constant T-c for pH above 5.5, with 15% there is a continuous increase in T-c with pH and, for higher AA contents, no clouding was observed within the studied temperature range. Fluorescence probe studies were conducted by following the I (1)/I (3) ratio of pyrene vibronic bands and the emission of anilinonaphtalene sulfonic acid, sodium salt (ANS), both approaches revealing the existence of hydrophobic domains for polymers with higher ethyl methacrylate content at temperatures lower than T-c, suggesting some extent of aggregation and/or a coil-to-globule transition. Scanning calorimetry measurements showed an endothermic transition at temperatures agreeing with the previously detected cloud points. Moreover, the transition curves became broader and with a smaller transition enthalpy, as both the AA content and the solution pH were increased. These broader transitions were interpreted to be the result of a wider molecular distribution upon polymer ionization, hence, displaying varied solution properties. The decrease in transition enthalpy was rationalized as a consequence of reminiscent hydration of NIPAM units, even after phase separation, owing to the presence of electric charges along the polymer chain.283666267

    In vivo therapeutic efficacy of TNFα silencing by folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice

    No full text
    Qin Shi,1 Elsa-Patricia Rondon-Cavanzo,1 Isadora Pfeifer Dalla Picola,1,2 Marcio José Tiera,2 Xiaoling Zhang,3 Kerong Dai,4 Houda Abir Benabdoune,1 Mohamed Benderdour,1 Julio Cesar Fernandes1 1Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada; 2Department of Chemistry and Environmental Sciences, UNESP-São Paulo State University, São José do Rio Preto, Brazil; 3Orthopedic Cellular and Molecular Biology Laboratories, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 4Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China Background: Tumor necrosis factor-alpha (TNFα), a pro-inflammatory cytokine, has been shown to play a role in the pathophysiology of rheumatoid arthritis. Silencing TNFα expression with small interfering RNA (siRNA) is a promising approach to treatment of the condition. Methods: Towards this end, our team has developed a modified chitosan (CH) nanocarrier, deploying folic acid, diethylethylamine (DEAE) and polyethylene glycol (PEG) (folate-PEG-CH-DEAE15). The gene carrier protects siRNA against nuclease destruction, its ligands facilitate siRNA uptake via cell surface receptors, and it provides improved solubility at neutral pH with transport of its load into target cells. In the present study, nanoparticles were prepared with siRNA-TNFα, DEAE, and folic acid-CH derivative. Nanoparticle size and zeta potential were verified by dynamic light scattering. Their TNFα-knockdown effects were tested in a murine collagen antibody-induced arthritis model. TNFα expression was examined along with measurements of various cartilage and bone turnover markers by performing histology and microcomputed tomography analysis.Results: We demonstrated that folate-PEG-CH-DEAE15/siRNA nanoparticles did not alter cell viability, and significantly decreased inflammation, as demonstrated by improved clinical scores and lower TNFα protein concentrations in target tissues. This siRNA nanocarrier also decreased articular cartilage destruction and bone loss. Conclusion: The results indicate that folate-PEG-CH-DEAE15 nanoparticles are a safe and effective platform for nonviral gene delivery of siRNA, and their potential clinical applications warrant further investigation. Keywords: arthritis, inflammation, siRNA, TNFα, nanoparticles, chitosa

    Peptide-guided gene delivery

    No full text
    Although currently less efficient than their viral counter-parts, nonviral vectors are under intense investigation as a safer alternative for gene therapy. For successful delivery, the nonviral vector must be able to overcome many barriers to protect DNA and specifically deliver it for efficient gene expression in target cells. The use of peptides as gene delivery vectors is advantageous over other nonviral agents in that they are able to achieve all of these goals. This review will focus on the application of peptides to mediate nonviral gene delivery. By examining the literature over the past 20 years, it becomes clear that no other class of biomolecules are simultaneously capable of DNA condensation, blocking metabolism, endosomal escape, nuclear localization, and receptor targeting. Based on virtually limitless diversity of peptide sequence and function information from nature, it is increasingly clear that peptide-guided gene delivery is still in its infancy

    O death where is thy sting? Immunologic tolerance to apoptotic self

    No full text
    corecore