16 research outputs found

    Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand

    Get PDF
    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach

    Taming global flood disasters: lessons learned from Dutch experience

    Get PDF
    There is a growing international recognition that flood risk management in optima forma should be a programmed and flexible process of continuously improving management practices by active learning about the outcome of earlier and ongoing interventions and drivers of change. In the Netherlands, such a long-term, adaptive flood risk management strategy is now being implemented. This so-called second Delta Programme aims to identify and exploit opportunities and capitalize on short-term benefits and opportunistic synergies that arise from change and will require adaptive policymaking. It also requires the financial and institutional means to operate in a long-lasting way, which at the very least, means engaging stakeholders, gathering and disseminating results and adaptation of future plans. Transferring the Dutch approach to other countries is a major challenge that calls for fundamental changes in institutional arrangements at various levels and thus requires customized programmes for strategic institutional change. Recent examples of transfer will provide important lessons of how institutional change can successfully occur and will contribute insights for other countries that attempting to reform their flood risk management strategies. Continuous monitoring and evaluation and sharing international experiences will become crucial for the effective delivery and wider uptake of these new strategies around the globe.Hydraulic EngineeringCivil Engineering and Geoscience

    Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA

    Get PDF
    This paper applies the DIVA model to assess the risk of and adaptation to sea-level rise for the European Union in the 21st century under the A2 and B1 scenarios of the Intergovernmental Panel on Climate Change. For each scenario, impacts are estimated without and with adaptation in the form of increasing dike heights and nourishing beaches. Before 2050, the level of impacts is primarily determined by socio-economic development. In 2100 and assuming no adaptation, 780x10(3) people/year are estimated to be affected by coastal flooding under A2 and 200x10(3) people/year under B1. The total monetary damage caused by flooding, salinity intrusion, land erosion and migration is projected to be about US17x10(9)underbothscenariosin2100;damagecostsrelativetoGDParehighestfortheNetherlands(0.3 17x10(9) under both scenarios in 2100; damage costs relative to GDP are highest for the Netherlands (0.3% of GDP under A2). Adaptation reduces the number of people flooded by factors of 110 to 288 and total damage costs by factors of 7 to 9. In 2100 adaptation costs are projected to be US 3.5x10(9) under A2 and 2.6x10(9) under B1; adaptation costs relative to GDP are highest for Estonia (0.16% under A2) and Ireland (0.05% under A2). These results suggest that adaptation measures to sea-level rise are beneficial and affordable, and will be widely applied throughout the European Union
    corecore