9 research outputs found

    Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements

    Get PDF
    Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions

    Termination of the leprosy isolation policy in the US and Japan : Science, policy changes, and the garbage can model

    Get PDF
    BACKGROUND: In both the US and Japan, the patient isolation policy for leprosy /Hansen's disease (HD) was preserved along with the isolation facilities, long after it had been proven to be scientifically unnecessary. This delayed policy termination caused a deprivation of civil liberties of the involuntarily confined patients, the fostering of social stigmas attached to the disease, and an inefficient use of health resources. This article seeks to elucidate the political process which hindered timely policy changes congruent with scientific advances. METHODS: Examination of historical materials, supplemented by personal interviews. The role that science played in the process of policy making was scrutinized with particular reference to the Garbage Can model. RESULTS: From the vantage of history, science remained instrumental in all period in the sense that it was not the primary objective for which policy change was discussed or intended, nor was it the principal driving force for policy change. When the argument arose, scientific arguments were employed to justify the patient isolation policy. However, in the early post-WWII period, issues were foregrounded and agendas were set as the inadvertent result of administrative reforms. Subsequently, scientific developments were more or less ignored due to concern about adverse policy outcomes. Finally, in the 1980s and 1990s, scientific arguments were used instrumentally to argue against isolation and for the termination of residential care. CONCLUSION: Contrary to public expectations, health policy is not always rational and scientifically justified. In the process of policy making, the role of science can be limited and instrumental. Policy change may require the opening of policy windows, as a result of convergence of the problem, policy, and political streams, by effective exercise of leadership. Scientists and policymakers should be attentive enough to the political context of policies

    Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes

    Get PDF
    In this study, the design, realization and measurement results of a novel optofluidic system capable of performing absorbance-based flow cytometric analysis is presented. This miniaturized laboratory platform, fabricated using SU-8 on a silicon substrate, comprises integrated polymer-based waveguides for light guiding and a biconcave cylindrical lens for incident light focusing. The optical structures are detached from the microfluidic sample channel resulting in a significant increase in optical sensitivity. This allows the application of standard solid-state laser and standard silicon-based photodiodes operated by lock-in-amplification resulting in a highly practical and effective detection system. The easy-to-fabricate single-layer microfluidic structure enables independently adjustable 3D hydrodynamic sample focusing to an arbitrary position in the channel. To confirm the fluid dynamics and raytracing simulations and to characterize the system, different sets of microparticles and T-lymphocyte cells (Jurkat cell line) for vital staining were investigated by detecting the extinction (axial light loss) signal. The analytical classification via signal peak height/width demonstrates the high sensitivity and sample discrimination capability of this compact low-cost/low-power microflow cytometer.BiotechnologyApplied Science

    Current Perspective in the Discovery of Anti-aging Agents from Natural Products

    No full text
    corecore