24 research outputs found
Vocal Learning and Auditory-Vocal Feedback
Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to develop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are dened here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory input to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or ve mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary. This chapter asks whether some auditory-vocal feedback may have provided neural substrates for the evolution of vocal learning. Progress will require more precise definitions of different forms of vocal learning, broad comparative review of their presence and absence, and behavioral and neurobiological investigations into the mechanisms underlying the skills.PostprintPeer reviewe
A Topological Representation of Branching Neuronal Morphologies
The online version of this article (https://doi.org/10.1007/s12021-017-9341-1) contains supplementary material, which is available to authorized users. Among others, we thank Athanassia Chalimourda and Katherine Turner for helpful conversations in various stages of this research and Jay Coggan for a critical reading of the manuscript. We also thank Hanchuan Peng and Xiaoxiao Liu for providing and curating the BigNeuron datasets. This work was supported by funding for the Blue Brain Project (BBP) from the ETH Domain. P.D. and R.L. were supported part by the Blue Brain Project and by the start-up grant of KH. Partial support for P.D. has been provided by the Advanced Grant of the European Research Council GUDHI (Geometric Understanding in Higher Dimensions). MS was supported by the SNF NCCR âSynapsyâ.Peer reviewedPublisher PD
Electrophysiological Properties of Octopus Neurons of the Cat Cochlear Nucleus: an In Vitro Study
Electrophysiological studies from mice in vitro have suggested that octopus cells of the mammalian ventral cochlear nucleus (VCN) are anatomically and biophysically specialized for detecting the coincident firing of a population of auditory nerve fibers. Recordings from cats in vivo have shown that octopus cells fire rapidly and with exceptional temporal precision as they convey the timing of that coincidence to higher auditory centers. The current study addresses the question whether the biophysical properties of octopus cells that have until now been examined only in mice, are shared by octopus cells in cats. Whole-cell patch-clamp recordings confirm that octopus cells in brain slices from kittens share the anatomical and biophysical features of octopus cells in mice. As in mice, octopus cells in kittens have large cell bodies and thick dendrites that extend in one direction. Voltage changes produced by depolarizing and hyperpolarizing current injection were small and rapid. Input resistances and membrane time constants in octopus cells of 16-day-old kittens were 15.8â±â1.5 MΩ (nâ=â16) and 1.28â±â0.3 ms (nâ=â16), respectively. Octopus cells fired only a single action potential at the onset of a depolarizing current pulse; suprathreshold stimuli were greater than 1.8 nA. A tetrodotoxin (TTX)-sensitive sodium conductance (gNa) was responsible for the generation of the action potentials. Octopus cells displayed outward rectification that lasted for the duration of the depolarizing pulses. Hyperpolarizations produced by the injection of current exhibited a depolarizing sag of the membrane potential toward the resting value. A 4-aminopyridine (4-AP) and α-dendrotoxin (α-DTX)-sensitive, low-voltage-activated potassium conductance (gKL) and a ZD7288-sensitive, mixed-cation conductance (gh) were partially activated at rest, giving the octopus cells low input resistances and, as a consequence, brief time constants. In 7-day-old kittens, action potentials were taller and broader, input resistances higher, and both inward and outward rectification was weaker than in 16-day-old kittens. Also as in mice, stellate cells of the VCN fired trains of action potentials with constant interspike intervals when they were depolarized (nâ=â10) and bushy cells of the VCN fired only a single action potential at the onset of depolarizations (nâ=â6). In conclusion, the similarity of octopus cells in mice and kittens suggests that the anatomical and biophysical specializations that allow octopus cells to detect and convey synchronous firing among auditory nerve fibers are common to all mammals