31 research outputs found
Acetylation Regulates WRN Catalytic Activities and Affects Base Excision DNA Repair
Background: The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings: Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol b-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance: Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER
The Werner Syndrome Helicase/Exonuclease Processes Mobile D-Loops through Branch Migration and Degradation
RecQ DNA helicases are critical for preserving genome integrity. Of the five RecQ family members identified in humans, only the Werner syndrome protein (WRN) possesses exonuclease activity. Loss of WRN causes the progeroid disorder Werner syndrome which is marked by cancer predisposition. Cellular evidence indicates that WRN disrupts potentially deleterious intermediates in homologous recombination (HR) that arise in genomic and telomeric regions during DNA replication and repair. Precisely how the WRN biochemical activities process these structures is unknown, especially since the DNA unwinding activity is poorly processive. We generated biologically relevant mobile D-loops which mimic the initial DNA strand invasion step in HR to investigate whether WRN biochemical activities can disrupt this joint molecule. We show that WRN helicase alone can promote branch migration through an 84 base pair duplex region to completely displace the invading strand from the D-loop. However, substrate processing is altered in the presence of the WRN exonuclease activity which degrades the invading strand both prior to and after release from the D-loop. Furthermore, telomeric D-loops are more refractory to disruption by WRN, which has implications for tighter regulation of D-loop processing at telomeres. Finally, we show that WRN can recognize and initiate branch migration from both the 5′ and 3′ ends of the invading strand in the D-loops. These findings led us to propose a novel model for WRN D-loop disruption. Our biochemical results offer an explanation for the cellular studies that indicate both WRN activities function in processing HR intermediates
Reversals of fortune: path dependency, problem solving, and temporal cases
Historical reversals highlight a basic methodological problem: is it possible to treat two successive periods both as independent cases to compare for causal analysis and as parts of a single historical sequence? I argue that one strategy for doing so, using models of path dependency, imposes serious limits on explanation. An alternative model which treats successive periods as contrasting solutions for recurrent problems offers two advantages. First, it more effectively combines analytical comparisons of different periods with narratives of causal sequences spanning two or more periods. Second, it better integrates scholarly accounts of historical reversals with actors’ own narratives of the past
An abnormal but functionally active complement component C9 protein found in an Irish family with subtotal C9 deficiency
Two independently segregating C9 genetic defects have previously been reported in two siblings in an Irish family with subtotal C9 deficiency. One defect would lead to an abnormal C9 protein, with replacement of a cysteine by a glycine (C98G). The second defect is a premature stop codon at amino acid 406 which would lead to a truncated C9. However, at least one of two abnormal proteins was present in the circulation of the proband at 0·2% of normal C9 concentration. In this study, the abnormal protein was shown to have a molecular weight approximately equal to that of normal C9, and to carry the binding site for monoclonal antibody (mAb) Mc42 which is known to react with an epitope at amino acid positions 412–426, distal to 406. Therefore, the subtotal C9 protein carries the C98G defect. The protein was incorporated into the terminal complement complex, and was active in haemolytic, bactericidal and lipopolysaccharide release assays. A quantitative haemolytic assay indicated even slightly greater haemolytic efficiency than normal C9. Epitope mapping with six antihuman C9 mAbs showed the abnormal protein to react to these antibodies in the same way as normal C9. However, none of these mAbs have epitopes within the lipoprotein receptor A module, where the C98G defect is located. The role of this region in C9 functionality is still unclear. In conclusion, we have shown that the lack of a cysteine led to the production of a protein present in the circulation at very much reduced levels, but which was fully functionally active
High prevalence of complement component C6 deficiency among African-Americans in the South-eastern USA
Complement component C6 is a part of the membrane attack complex that forms a pore-like structure in cell membranes following complement activation. Deficiency of terminal complement components including C6 predisposes individuals to infection with Neisseriae. Using polymerase chain reaction/single-strand conformation polymorphism analysis followed by DNA sequencing, we screened genomic DNA from 200 randomly chosen blacks and an equal number from whites for three loss-of-function C6 mutations. Ten blacks and two whites were found to be heterozygous for one of the mutations. Two of the mutations, 1195delC and 1936delG, were found exclusively in black individuals. A third previously undescribed mutation, 878delA, was found at equal frequency among the two groups. The difference between the two groups was significant (P = 0.027), indicating that C6 deficiency due to these three mutations is more common among blacks than whites in the local area, principally Jefferson County, Alabama. In addition, three previously undescribed point mutations, two of which result in amino acid substitutions, were identified within exon 6. A review of the county health department records over the past 6 years revealed a higher incidence of meningococcal meningitis in blacks due to serogroups Y and W-135 which paralleled the difference in the estimated prevalence of C6 deficiency. Among black residents of the county (n = 235 598) there were 15 cases of meningitis due to these two serogroups, compared with two cases in the white population (n = 422 604) (P = 0.002). We conclude that C6 deficiency is more common among blacks than whites in the south-eastern United States, with a frequency approaching 1 in 1600 black individuals
Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9
Lipopolysaccharides (LPS) are major antigenic components of the outer membrane of Gram-negative bacteria and can stimulate activation of the complement system. Such activation leads to formation of the complement membrane attack complex (MAC) on the cell walls, LPS release and, in serum-sensitive strains, to cell death. In this study, Escherichia coli J5 strains, which incorporate exogenous galactose exclusively into LPS, were used to generate target strains with different LPS chemotypes, and the LPS of the strains was labelled with tritium ((3)H-LPS). The ability of normal human serum (NHS) and human complement-deficient sera to release LPS was subsequently monitored. NHS-induced release of 64–95·7% of (3)H-LPS within 30 min; overall, no significant difference was observed between release of LPS from E. coli J5 strains with different LPS chemotypes. In functional assays, maximum LPS release had occurred by 30 min and before maximum bacterial killing. Electron microscopy revealed NHS-induced outer-membrane disruption in the form of blebs at 15 min; at this time-point the inner membrane remained intact. Background LPS release and no bactericidal activity were detected in heat-inactivated serum or human sera deficient in C6, C7 or C8. The C9-deficient (C9D) serum had low bactericidal activity and failed to induce LPS release; however, addition of purified human C9 reconstituted its ability to release LPS. This study demonstrated the need for functional C9 molecules for LPS-releasing activities in serum-sensitive E. coli J5 strains
C7 deficiency in an Irish family: a deletion defect which is predominant in the Irish
Human deficiencies of terminal complement components are known to be associated with increased susceptibility to Neisseria meningitidis infection. Polymorphic DNA marker studies in complement deficient investigations allow identification of haplotypes associated with the deficiency and enable the possible identification of heterozygote carriers of the defect. We report studies of an Irish family in which the index case had suffered recurrent meningococcal disease and was found to be deficient in the seventh component of complement (C7). The availability of all family members enabled us to determine the segregating haplotypes. The defects in the family segregated with two very closely related C6 and C7 DNA haplotypes, one of which is known to be associated with the large Irish C7 DNA deletion defect. The index case and two C7 deficient siblings were found to be homozygous for this defect, a deletion that spans approx. 6.8 kbp and encompasses exons 7 and 8. The deletion defect of exons 7 and 8 of C7 has been found in homozygous form in another C7 deficient Irish individual, and is present in heterozygous form in C7 deficient members of a third Irish family. Therefore, this deletion defect occurs in five of the six deficient chromosomes of these three unrelated Irish families, raising the interesting question of how prevalent this defect may be within the Irish community