47 research outputs found

    Studies of a co-chaperone of the androgen receptor, FKBP52, as candidate for hypospadias

    Get PDF
    BACKGROUND: Hypospadias is a common inborn error of the male urethral development, for which the aetiology is still elusive. Polymorphic variants in genes involved in the masculinisation of male genitalia, such as the androgen receptor, have been associated with some cases of hypospadias. Co-regulators of the androgen receptor start being acknowledged as possible candidates for hormone-resistance instances, which could account for hypospadias. One such molecule, the protein FKBP52, coded by the FKBP4 gene, has an important physiological role in up-regulating androgen receptor activity, an essential step in the development of the male external genitalia. The presence of hypospadias in mice lacking fkbp52 encouraged us to study the sequence and the expression of FKBP4 in boys with isolated hypospadias. PATIENTS AND METHODS: The expression of FKBP52 in the genital skin of boys with hypospadias and in healthy controls was tested by immunohistochemistry. Mutation screening in the FKBF4 gene was performed in ninety-one boys with non syndromic hypospadias. Additionally, two polymorphisms were typed in a larger cohort. RESULTS: Immunohistochemistry shows epithelial expression of FKBP52 in the epidermis of the penile skin. No apparent difference in the FKBP52 expression was detected in healthy controls, mild or severe hypospadias patients. No sequence variants in the FKBP4 gene have implicated in hypospadias in our study. CONCLUSION: FKBP52 is likely to play a role in growth and development of the male genitalia, since it is expressed in the genital skin of prepubertal boys; however alterations in the sequence and in the expression of the FKBP4 gene are not a common cause of non-syndromic hypospadias

    Severe forms of partial androgen insensitivity syndrome due to p.L830F novel mutation in androgen receptor gene in a Brazilian family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The androgen insensitivity syndrome may cause developmental failure of normal male external genitalia in individuals with 46,XY karyotype. It results from the diminished or absent biological action of androgens, which is mediated by the androgen receptor in both embryo and secondary sex development. Mutations in the androgen receptor gene, located on the X chromosome, are responsible for the disease. Almost 70% of 46,XY affected individuals inherited mutations from their carrier mothers.</p> <p>Findings</p> <p>Molecular abnormalities in the androgen receptor gene in individuals of a Brazilian family with clinical features of severe forms of partial androgen insensitivity syndrome were evaluated. Seven members (five 46,XY females and two healthy mothers) of the family were included in the investigation. The coding exons and exon-intron junctions of androgen receptor gene were sequenced. Five 46,XY members of the family have been found to be hemizygous for the c.3015C>T nucleotide change in exon 7 of the androgen receptor gene, whereas the two 46,XX mothers were heterozygote carriers. This nucleotide substitution leads to the p.L830F mutation in the androgen receptor.</p> <p>Conclusions</p> <p>The novel p.L830F mutation is responsible for grades 5 and 6 of partial androgen insensitivity syndrome in two generations of a Brazilian family.</p

    LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown.</p> <p>Methods</p> <p>We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC <it>in vivo </it>using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC.</p> <p>Results</p> <p>Three million tags were sequenced using <it>in vivo </it>samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (<it>CCNH, CUEDC2, FLNA, PSMA7</it>), steroid synthesis and metabolism (<it>DHCR24, DHRS7</it>, <it>ELOVL5, HSD17B4</it>, <it>OPRK1</it>), neuroendocrine (<it>ENO2, MAOA, OPRK1, S100A10, TRPM8</it>), and proliferation (<it>GAS5</it>, <it>GNB2L1</it>, <it>MT-ND3</it>, <it>NKX3-1</it>, <it>PCGEM1</it>, <it>PTGFR</it>, <it>STEAP1</it>, <it>TMEM30A</it>), but neither supported nor discounted a role for cell survival genes.</p> <p>Conclusions</p> <p>The <it>in vivo </it>gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.</p

    Evolution of a New Function by Degenerative Mutation in Cephalochordate Steroid Receptors

    Get PDF
    Gene duplication is the predominant mechanism for the evolution of new genes. Major existing models of this process assume that duplicate genes are redundant; degenerative mutations in one copy can therefore accumulate close to neutrally, usually leading to loss from the genome. When gene products dimerize or interact with other molecules for their functions, however, degenerative mutations in one copy may produce repressor alleles that inhibit the function of the other and are therefore exposed to selection. Here, we describe the evolution of a duplicate repressor by simple degenerative mutations in the steroid hormone receptors (SRs), a biologically crucial vertebrate gene family. We isolated and characterized the SRs of the cephalochordate Branchiostoma floridae, which diverged from other chordates just after duplication of the ancestral SR. The B. floridae genome contains two SRs: BfER, an ortholog of the vertebrate estrogen receptors, and BfSR, an ortholog of the vertebrate receptors for androgens, progestins, and corticosteroids. BfSR is specifically activated by estrogens and recognizes estrogen response elements (EREs) in DNA; BfER does not activate transcription in response to steroid hormones but binds EREs, where it competitively represses BfSR. The two genes are partially coexpressed, particularly in ovary and testis, suggesting an ancient role in germ cell development. These results corroborate previous findings that the ancestral steroid receptor was estrogen-sensitive and indicate that, after duplication, BfSR retained the ancestral function, while BfER evolved the capacity to negatively regulate BfSR. Either of two historical mutations that occurred during BfER evolution is sufficient to generate a competitive repressor. Our findings suggest that after duplication of genes whose functions depend on specific molecular interactions, high-probability degenerative mutations can yield novel functions, which are then exposed to positive or negative selection; in either case, the probability of neofunctionalization relative to gene loss is increased compared to existing models

    Three siblings with complete androgen insensitivity syndrome

    No full text

    Complete Androgen Insensitivity Syndrome

    No full text

    Revue de la litterature internationale

    No full text
    corecore