397 research outputs found
Implementation of a symmetric surface electrode ion trap with field compensation using a modulated Raman effect
We describe the fabrication and characterization of a new surface-electrode Paul ion trap designed for experiments in scalable quantum information processing with Ca+. A notable feature is a symmetric electrode pattern which allows rotation of the normal modes of ion motion, yielding efficient Doppler cooling with a single beam parallel to the planar surface. We propose and implement a technique for micromotion compensation in all directions using an infrared repumper laser beam directed into the trap plane. Finally, we employ an alternate repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling
Scintigraphic assessment of bone status at one year following hip resurfacing : comparison of two surgical approaches using SPECT-CT scan
Objectives: To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches.
Methods: In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach.
Results: One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy.
Conclusions: Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery
MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4
Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically
Echinocandin Treatment of Pneumocystis Pneumonia in Rodent Models Depletes Cysts Leaving Trophic Burdens That Cannot Transmit the Infection
Fungi in the genus Pneumocystis cause pneumonia (PCP) in hosts with debilitated immune systems and are emerging as co-morbidity factors associated with chronic diseases such as COPD. Limited therapeutic choices and poor understanding of the life cycle are a result of the inability of these fungi to grow outside the mammalian lung. Within the alveolar lumen, Pneumocystis spp., appear to have a bi-phasic life cycle consisting of an asexual phase characterized by binary fission of trophic forms and a sexual cycle resulting in formation of cysts, but the life cycle stage that transmits the infection is not known. The cysts, but not the trophic forms, express β -1,3-D-glucan synthetase and contain abundant β -1,3-D-glucan. Here we show that therapeutic and prophylactic treatment of PCP with echinocandins, compounds which inhibit the synthesis of β -1,3-D-glucan, depleted cysts in rodent models of PCP, while sparing the trophic forms which remained in significant numbers. Survival was enhanced in the echincandin treated mice, likely due to the decreased β -1,3-D-glucan content in the lungs of treated mice and rats which coincided with reductions of cyst numbers, and dramatic remodeling of organism morphology. Strong evidence for the cyst as the agent of transmission was provided by the failure of anidulafungin-treated mice to transmit the infection. We show for the first time that withdrawal of anidulafungin treatment with continued immunosuppression permitted the repopulation of cyst forms. Treatment of PCP with an echinocandin alone will not likely result in eradication of infection and cessation of echinocandin treatment while the patient remains immunosuppressed could result in relapse. Importantly, the echinocandins provide novel and powerful chemical tools to probe the still poorly understood bi-phasic life cycle of this genus of fungal pathogens
Regular Exercise or Changing Diet Does Not Influence Aortic Valve Disease Progression in LDLR Deficient Mice
BACKGROUND: The development and progression of calcific aortic valve disease (CAVD) shares a number of similarities with atherosclerosis. Recently we could demonstrate that regular exercise training (ET) as primary prevention prevents aortic valve disease in LDL-receptor deficient (LDLR(-/-)) mice. We aimed to investigate the impact of exercise training on the progression of CAVD in LDLR(-/-) mice in the setting of secondary prevention METHODS AND RESULTS: Sixty-four LDLR(-/-) mice were fed with high cholesterol diet to induce aortic valve sclerosis. Thereafter the animals were divided into 3 groups: group 1 continuing on high cholesterol diet, group 2 continuing with cholesterol diet plus 1 h ET per day, group 3 continuing with normal mouse chow. After another 16 weeks the animal were sacrificed. Histological analysis of the aortic valve thickness demonstrated no significant difference between the three groups (control 98.3±4.5 µm, ET 88.2±6.6 µm, change in diet 87.5±4.0). Immunohistochemical staining for endothelial cells revealed a disrupted endothelial cell layer to the same extend in all groups. Furthermore no difference between the groups was evident with respect to the expression of inflammatory, fibroblastic and osteoblastic markers. CONCLUSION: Based on the present study we have to conclude that once the development of a CAVD is initiated, exercise training or a change in diet does not have the potential to attenuate the progress of the CAVD
Modulation of CP2 Family Transcriptional Activity by CRTR-1 and Sumoylation
CRTR-1 is a member of the CP2 family of transcription factors. Unlike other members of the family which are widely expressed, CRTR-1 expression shows specific spatio-temporal regulation. Gene targeting demonstrates that CRTR-1 plays a central role in the maturation and function of the salivary glands and the kidney. CRTR-1 has also recently been identified as a component of the complex transcriptional network that maintains pluripotency in embryonic stem (ES) cells. CRTR-1 was previously shown to be a repressor of transcription. We examine the activity of CRTR-1 in ES and other cells and show that CRTR-1 is generally an activator of transcription and that it modulates the activity of other family members, CP2, NF2d9 and altNF2d9, in a cell specific manner. We also demonstrate that CRTR-1 activity is regulated by sumoylation at a single major site, residue K30. These findings imply that functional redundancy with other family members may mask important roles for CRTR-1 in other tissues, including the blastocyst stage embryo and embryonic stem cells
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Pneumocystis murina colonization in immunocompetent surfactant protein A deficient mice following environmental exposure
<p>Abstract</p> <p>Background</p> <p><it>Pneumocystis spp</it>. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. <it>Pneumocystis </it>colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to <it>Pneumocystis</it>.</p> <p>Methods</p> <p>To analyze the role of SP-A in protecting the immunocompetent host from <it>Pneumocystis </it>colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to <it>P. murina </it>colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA).</p> <p>Results</p> <p>Detection of <it>P. murina </it>specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to <it>P. murina </it>within the animal facility. However, P. <it>murina </it>mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8–10 weeks and declined to undetectable levels by 16–18 weeks. When the mice were immunosuppressed, <it>P. murina </it>cyst forms were also only detected in KO mice. <it>P. murina </it>mRNA was detected in <it>SCID </it>mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared.</p> <p>Conclusion</p> <p>These data support an important role for SP-A in protecting the immunocompetent host from <it>P. murina </it>colonization, and provide a model to study <it>Pneumocystis </it>colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to <it>P. murina </it>even when housed under barrier conditions.</p
p66 Shc and tyrosine-phosphorylated Shc in primary breast tumors identify patients likely to relapse despite tamoxifen therapy
INTRODUCTION: Shc adapter proteins are secondary messenger proteins involved in various cellular pathways, including those mediating receptor tyrosine kinase signaling and apoptosis in response to stress. We have previously reported that high levels of tyrosine-phosphorylated Shc (PY-Shc) and low levels of its inhibitory p66 Shc isoform are strongly prognostic for identifying both early node-negative and more advanced, node-positive, primary breast cancers with high risk for recurrence. Because aberrant activation of tyrosine kinases upstream of Shc signaling proteins has been implicated in resistance to tamoxifen – the most widely prescribed drug for treatment of estrogen receptor-positive breast cancer – we hypothesized that Shc isoforms may identify patients at increased risk of relapsing despite tamoxifen treatment. METHODS: Immunohistochemical analyses of PY-Shc and p66 Shc were performed on archival primary breast cancer tumors from a population-based cohort (60 patients, 9 relapses) and, for validation, an independent external cohort (31 patients, 13 relapses) in which all patients received tamoxifen as a sole systemic adjuvant prior to relapse. RESULTS: By univariate and multivariate analyses, the Shc proteins were very strong and independent predictors of treatment failure in both the population-based cohort (interquartile hazard ratio = 8.3, 95% confidence interval [CI] 1.8 to 38, P = 0.007) and the validating cohort (interquartile relative risk = 12.1, 95% CI 1.7 to 86, P = 0.013). CONCLUSION: These results suggest that the levels of PY-Shc and p66 Shc proteins in primary tumors identify patients at high risk for relapsing despite treatment with tamoxifen and therefore with further validation may be useful in guiding clinicians to select alternative adjuvant treatment strategies
- …