20 research outputs found

    Anatomia e Fisiologia: evoluindo de “mãos dadas"

    Get PDF
    A Anatomia e a Fisiologia encontram-se intimamente ligadas e são unidades curriculares fundamentais em inúmeros cursos ligados às ciências da vida. Documentos ancestrais comprovam que a história da Anatomia e da Fisiologia teve início na Grécia e encontra-se associada a Hipócrates (460-370 a.C.), conhecido como o Pai da Medicina, e à sua obra “Corpus Hippocraticus”. O médico grego Claudius Galeno (129-200 d.C.) desenvolveu trabalhos nas áreas da Anatomia e da Fisiologia. Dos resultados das suas experiências em animais surge o conceito de fisiologia experimental. Galeno é considerado o “pai” da fisiologia experimental e a sua obra “Sobre o uso das partes do corpo humano” regeu a Medicina por catorze séculos, após os quais algumas das suas teorias foram contestadas. Os artistas renascentistas, como Leonardo da Vinci e Michelangelo, estudavam os corpos para obter perfeição nas formas artísticas, contribuindo para o desenvolvimento da Anatomia. Em plena época do Renascimento, surgiu pela primeira vez o significado da palavra Fisiologia de acordo com a definição de Jean Fernel (1497-1558). Este ficou conhecido pela célebre frase: “A Anatomia está para a Fisiologia como a Geografia está para a História: ambas descrevem o teatro de operações”. Jean Fernel é o marco entre a medicina medieval e a medicina da idade moderna. Vesalius (1514-1564) corrigiu erros de outros anatomistas e escreveu a obra “De humani corporis fabrica” que contribuiu para o reconhecimento da Anatomia como ciência básica. Já no século XVII, uma das maiores contribuições para a Fisiologia data de 1628, ano da publicação da obra “Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus”, de William Harvey (1578-1657), onde pela primeira vez se descreveu a anatomia e o movimento do coração e a consequente circulação do sangue pelo corpo. O “De Motu Cordis” foi o primeiro tratado da época moderna dedicado a um tema estritamente fisiológico. Em 1876 foi fundada, em Londres, a Sociedade de Fisiologia e em 1887 nos Estados Unidos da América foi fundada a Sociedade de Fisiologia Americana. Ambas se dedicavam à investigação científica, educação e disseminação de conceitos relacionados com a fisiologia. O primeiro Congresso internacional de Anatomia decorreu em 1895, em Basileia

    Can the mitochondrial malondialdehyde content be an useful tool to distinguish ecological quality of Petromyzon marinus habitat?

    Get PDF
    The sea lamprey is an anadromous species that migrates twice during its life cycle between freshwater and seawater. Microphagous larvae generally spend 4–5 years burrowed in the substrate of rivers and streams before undergoing metamorphosis that ends with the beginning of the juvenile trophic migration. Once metamorphosis is complete, sea lamprey juvenile downstream migrants are fully tolerant to 35 PSU seawater. Pollution resulting from industrial effluents may disturb the seawater acclimatization causing oxidative damages, and ultimately may lead to a decrease of sea lamprey population. The aim of this study was to compare salt acclimation of sea lamprey juveniles captured in river basins with different levels of aquatic pollution, using mitochondrial glutathione and malondialdehyde of gills and liver as markers of physiological stress and cell damages. The results showed that juveniles from Lima basin exhibited the highest levels of mitochondrial malondialdehyde in gills, even though significant changes in the stress markers of mitochondrial gills of all animals subject to salt acclimation were not detected. In addition, an increase in the oxidative damages of hepatic mitochondria of macrophthalmia from Vouga basin suggests the occurrence of metabolic failures with the potential to disturb the capacity to adaptation to the marine environment

    Hepatic mitochondrial content in malondialdehyde may be a marker of sea lamprey contact with atrazine

    Get PDF
    The atrazine attracts special attention as pollutant because of itspersistence in the aquatic environment. Although this herbicide has been studied in teleost, its toxicity in the sea lamprey, Petromyzon marinus is still poorly understood. Oxidative stress may occur if chemical pollutants contribute to block the capacity of mitochondria to generate ATP with continuous production of reactive oxygen species (ROS), disturbing the success of P. marinus seawater acclimation. So, the aim of this study was to evaluate how atrazine influences the malondialdehyde (MDA), glutathione (GSH) and glutathione disulfide (GSSG) contents of gills and liver mitochondria of juveniles from Lima river basin, Portugal during salt acclimation. Sampling occurred at the beginning of the P. marinus downstream migration. The sampled juveniles were transported alive to the laboratory and maintained in 200 l tanks with LSS 8 life support system. Two groups of 40 specimens were hold in tanks with 50 or 100 lg/l atrazine, during 30 days. The salinity was gradually increased from 0 to 35 psu,following a three step procedure during a 30 days period. The control group was maintained in freshwater without atrazine. Mitochondria obtained by centrifugation at 15000 g, 30 min, 4°C, of tissues homogenates prepared in 50 mM Tris-HCl pH 7.5 buffer were used in determination of ROS, MDA, GSH and GSSG by fluorescence. The statistical analysis were performed by ANOVA I and Duncan (p < 0.05), using SPSS 22 for Windows.The results showed that in P. marinus juveniles, no significant changes in the markers of oxidative stress and cell damages were detected in the mitochondrial gills. Nevertheless, in the animals exposed to 50 lg/l atrazine the content in glutathione and GSSG increased. A similar pattern of stress markers was detected in hepatic mitochondria. However, in the presence of atrazine, the MDA level of the mitochondria of liver increased threefold in the animals during salt acclimation. The high level of mitochondrial damages, detected in the hepatic mitochondria of macrophthalmia treated with atrazine, suggests that herbicide exposure caused metabolic failures which can disturb the adaptation of these specimens to the oceanic feeding phase. The hepatic mitochondrial MDA levels of P. marinus, may eventually detect sea lamprey contact with chlorine herbicides

    Risk Factors and Characterization of Plasmodium Vivax-Associated Admissions to Pediatric Intensive Care Units in the Brazilian Amazon

    Get PDF
    BACKGROUND: Plasmodium vivax is responsible for a significant proportion of malaria cases worldwide and is increasingly reported as a cause of severe disease. The objective of this study was to characterize severe vivax disease among children hospitalized in intensive care units (ICUs) in the Western Brazilian Amazon, and to identify risk factors associated with disease severity. METHODS AND FINDINGS: In this retrospective study, clinical records of 34 children, 0-14 years of age hospitalized in the 11 public pediatric and neonatal ICUs of the Manaus area, were reviewed. P. falciparum monoinfection or P. falciparum/P. vivax mixed infection was diagnosed by microscopy in 10 cases, while P. vivax monoinfection was confirmed in the remaining 24 cases. Two of the 24 patients with P. vivax monoinfection died. Respiratory distress, shock and severe anemia were the most frequent complications associated with P. vivax infection. Ninety-one children hospitalized with P. vivax monoinfections but not requiring ICU were consecutively recruited in a tertiary care hospital for infectious diseases to serve as a reference population (comparators). Male sex (p = 0.039), age less than five years (p = 0.028), parasitemia greater than 500/mm(3) (p = 0.018), and the presence of any acute (p = 0.023) or chronic (p = 0.017) co-morbidity were independently associated with ICU admission. At least one of the WHO severity criteria for malaria (formerly validated for P. falciparum) was present in 23/24 (95.8%) of the patients admitted to the ICU and in 17/91 (18.7%) of controls, making these criteria a good predictor of ICU admission (p = 0.001). The only investigated criterion not associated with ICU admission was hyperbilirubinemia (p = 0.513)]. CONCLUSIONS: Our study points to the importance of P. vivax-associated severe disease in children, causing 72.5% of the malaria admissions to pediatric ICUs. WHO severity criteria demonstrated good sensitivity in predicting severe P. vivax infection in this small case series

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Get PDF
    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range

    Expressão diferencial de glutationo S-transferase citoplasmático de juvenis de Petromyzon marinus, L. da bacia do Vouga

    No full text
    O principal objectivo deste trabalho foi avaliar como a conjugação de xenobióticos com o glutationo mediada por glutationo S-transferase (E C 2.5.1.18, cGST) citoplasmáticos é afectada pelo ambiente da bacia, em particular pela concentração salina do meio

    Different profile of hepatic biotransformation system detected in the Petromyzon marinus, an ancestral vertebrate, in Portuguese river basins.

    No full text
    Biotransformation enzymes catalyze oxidation of a diversity of xenobiotics, doing a key role in its detoxication. CYP1A and GST expression, induced by pollutants, seems to be highly conserved across vertebrate taxa. Since this system acts as a defense mechanism, the intra or interspecies differences have been attributed to adaptations to different habitats and trophic strategies. Thus, the main goal of this study was to evaluate the presence and inducibility of biotransformation enzymes in Petromyzon marinus (agnathan), because a clear causal link between toxicological effects on individuals and population responses have demonstrated reduced abundance in wild populations. Sampling occurred at the beginning of the sea lamprey downstream migration in three Portuguese river basins: Lima, Vouga, and Mondego

    Can mitochondrial malondialdehyde content be a useful tool to evaluate sea lamprey juveniles’ capacity to seawater acclimatization?

    Get PDF
    The sea lamprey is an anadromous species that migrates twice during its life cycle between freshwater and seawater. Microphagous larvae generally spend 4–5 years burrowed in the substrate of rivers and streams before undergoing metamorphosis that ends with the beginning of the juvenile trophic migration. Once metamorphosis is complete, sea lamprey juvenile downstream migrants are fully tolerant to seawater salinity. Pollution resulting from industrial effluents may disturb the seawater acclimatization causing oxidative damage, and ultimately may lead to a decrease of sea lamprey population. The aim of this study was to compare salt acclimation of sea lamprey juveniles captured in river basins with different levels of aquatic pollution, using mitochondrial glutathione (GSH) and malondialdehyde (MDA) of gills and liver as markers of physiological stress and cell damage. The results showed that juveniles from the Lima basin exhibited the highest levels of mitochondrial MDA in gills, even though significant changes in the stress markers of mitochondrial gills of all animals subject to salt acclimation were not detected. In addition, an increase in the oxidative damage of hepatic mitochondria of macrophthalmia from the Vouga basin suggests the occurrence of metabolic failures with the potential to disturb the capacity to adaptation to the marine environment
    corecore