13 research outputs found

    Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles.

    No full text
    Thyrotropin-releasing hormone (TRH; Protirelin), an endogenous neuropeptide, is known to have anticonvulsant effects in animal seizure models and certain intractable epileptic patients. Its duration of action, however, is limited by rapid tissue metabolism and the blood—brain barrier. Direct nose-to-brain delivery of neuropeptides in sustained-release biodegradable nanoparticles (NPs) is a promising mode of therapy for enhancing CNS neuropeptide bioavailability. To provide proof of principle for this delivery approach, we used the kindling model of temporal lobe epilepsy to show that 1) TRH-loaded copolymer microdisks implanted in a seizure focus can attenuate kindling development in terms of behavioral stage, after-discharge duration (ADD), and clonus duration; 2) intranasal administration of an unprotected TRH analog can acutely suppress fully kindled seizures in a concentration-dependent manner in terms of ADD and seizure stage; and 3) intranasal administration of polylactide nanoparticles (PLA-NPs) containing TRH (TRH-NPs) can impede kindling development in terms of behavioral stage, ADD, and clonus duration. Additionally, we used intranasal delivery of fluorescent dye-loaded PLA-NPs in rats and application of dye-loaded or dye-attached NPs to cortical neurons in culture to demonstrate NP uptake and distribution over time in vivo and in vitro respectively. Also, a nanoparticle immunostaining method was developed as a procedure for directly visualizing the tissue level and distribution of neuropeptide-loaded nanoparticles. Collectively, the data provide proof of concept for intranasal delivery of TRH-NPs as a viable means to 1) suppress seizures and perhaps epileptogenesis and 2) become the lead compound for intranasal anticonvulsant nanoparticle therapeutics

    Intranasal Application of Secretin, Similarly to Intracerebroventricular Administration, Influences the Motor Behavior of Mice Probably Through Specific Receptors.

    Get PDF
    Secretin and its receptors show wide distribution in the central nervous system. It was demonstrated previously that intravenous (i.v.) and intracerebroventricular (i.c.v.) application of secretin influenced the behavior of rat, mouse, and human. In our previous experiment, we used a special animal model, Japanese waltzing mice (JWM). These animals run around without stopping (the ambulation distance is very limited) and they do not bother with their environment. The i.c.v. secretin attenuated this hyperactive repetitive movement. In the present work, the effect of i.c.v. and intranasal (i.n.) application of secretin was compared. We have also looked for the presence of secretin receptors in the brain structures related to motor functions. Two micrograms of i.c.v. secretin improved the horizontal movement of JWM, enhancing the ambulation distance. It was nearly threefold higher in treated than in control animals. The i.n. application of secretin to the left nostril once or twice a day or once for 3 days more effectively enhanced the ambulation distance than i.c.v. administration. When secretin was given twice a day for 3 days it had no effect. Secretin did not improve the explorative behavior (the rearing), of JWM. With the use of in situ hybridization, we have found very dense secretin receptor labeling in the cerebellum. In the primary motor cortex and in the striatum, only a few labeled cells were seen. It was supposed that secretin exerted its effect through specific receptors, mainly present in the cerebellum
    corecore