60 research outputs found

    Genetic counselling for psychiatric disorders: accounts of psychiatric health professionals in the United Kingdom

    Get PDF
    Genetic counselling is not routinely offered for psychiatric disorders in the United Kingdom through NHS regional clinical genetics departments. However, recent genomic advances, confirming a genetic contribution to mental illness, are anticipated to increase demand for psychiatric genetic counselling. This is the first study of its kind to employ qualitative methods of research to explore accounts of psychiatric health professionals regarding the prospects for genetic counselling services within clinical psychiatry in the UK. Data were collected from 32 questionnaire participants, and 9 subsequent interviewees. Data analysis revealed that although participants had not encountered patients explicitly demanding psychiatric genetic counselling, psychiatric health professionals believe that such a service would be useful and desirable. Genomic advances may have significant implications for genetic counselling in clinical psychiatry even if these discoveries do not lead to genetic testing. Psychiatric health professionals describe clinical genetics as a skilled profession capable of combining complex risk communication with much needed psychosocial support. However, participants noted barriers to the implementation of psychiatric genetic counselling services including, but not limited to, the complexities of uncertainty in psychiatric diagnoses, patient engagement and ethical concerns regarding limited capacity

    Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats

    Get PDF
    In spite of the clinical usefulness of cisplatin (CDDP), there are many occasions in which it is difficult to continue the administration of CDDP due to its nephrotoxicity and neurotoxicity. We examined the incorporation of CDDP into polymeric micelles to see if this allowed the resolution of these disadvantages. Cisplatin was incorporated into polymeric micelles through the polymer–metal complex formation between polyethylene glycol poly(glutamic acid) block copolymers and CDDP (NC-6004). The pharmacokinetics, pharmacodynamics, and toxicity studies of CDDP and NC-6004 were conducted in rats or mice. The particle size of NC-6004 was approximately 30 nm, with a narrow size distribution. In rats, the area under the curve and total body clearance values for NC-6004 were 65-fold and one-nineteenth the values for CDDP (P<0.001 and 0.01, respectively). In MKN-45-implanted mice, NC-6004 tended to show antitumour activity, which was comparable to or greater than that of CDDP. Histopathological and biochemical studies revealed that NC-6004 significantly inhibited the nephrotoxicity of CDDP. On the other hand, blood biochemistry revealed transient hepatotoxicity on day 7 after the administration of NC-6004. Furthermore, rats given CDDP showed a significant delay (P<0.05) in sensory nerve conduction velocity in their hind paws as compared with rats given NC-6004. Electron microscopy in rats given CDDP indicated the degeneration of the sciatic nerve, but these findings were not seen in rats given NC-6004. These results were presumably attributable to the significantly reduced accumulation of platinum in nerve tissue when NC-6004 was administered (P<0.05). NC-6004 preserved the antitumour activity of CDDP and reduced its nephrotoxicity and neurotoxicity, which would therefore seem to suggest that NC-6004 could allow the long-term administration of CDDP where caution against hepatic dysfunction must be exercised

    The cGMP-Dependent Protein Kinase II Is an Inhibitory Modulator of the Hyperpolarization-Activated HCN2 Channel

    Get PDF
    Opening of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated by direct binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus. Here, we show for the first time that in the HCN2 channel cGMP can also exert an inhibitory effect on gating via cGMP-dependent protein kinase II (cGKII)-mediated phosphorylation. Using coimmunoprecipitation and immunohistochemistry we demonstrate that cGKII and HCN2 interact and colocalize with each other upon heterologous expression as well as in native mouse brain. We identify the proximal C-terminus of HCN2 as binding region of cGKII and show that cGKII phosphorylates HCN2 at a specific serine residue (S641) in the C-terminal end of the CNBD. The cGKII shifts the voltage-dependence of HCN2 activation to 2–5 mV more negative voltages and, hence, counteracts the stimulatory effect of cGMP on gating. The inhibitory cGMP effect can be either abolished by mutation of the phosphorylation site in HCN2 or by impairing the catalytic domain of cGKII. By contrast, the inhibitory effect is preserved in a HCN2 mutant carrying a CNBD deficient for cGMP binding. Our data suggest that bidirectional regulation of HCN2 gating by cGMP contributes to cellular fine-tuning of HCN channel activity

    Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New Directions

    Full text link

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    Get PDF

    Swimming kinematics and efficiency of entangled North Atlantic right whales

    No full text
    Marine mammals are streamlined for efficient movement in their relatively viscous fluid environment and are able to alter their kinematics (i.e. fluke stroke frequency, amplitude, or both) in response to changes in force balance. Entanglement in fishing gear adds significant drag and buoyant forces that can impact swimming behaviors across a range of timescales. We deployed biologging tags during the disentanglement of 2 North Atlantic right whales Eubalaena glacialis to (1) examine how their kinematics changed in response to drag and buoyancy from entanglement in fishing gear, and (2) calculate resultant changes in swimming efficiency for one individual. We observed variable responses in dive behavior, but neither whale appeared to exploit added buoyancy to reduce energy expenditure. While some of the observed changes in behavior were individually specific, some swimming kinematics were consistently modulated in response to high drag and buoyancy associated with entangling gear, affecting thrust production. In high drag and buoyancy conditions, fluke strokes were significantly shorter and more variable in shape, and gliding was less frequent. Thrust and efficiency significantly differed among dive phases. Disentanglement reduced thrust coefficients ~4-fold, leading to 1.2 to 1.8-fold lower power (W). Ideal propulsive efficiency was significantly lower when entangled, though we detected no difference in observed propulsive efficiency between the conditions. Similar to carrying heavy objects or changing shoes, we present another condition where animals perceive unique movement constraints over seconds to minutes and develop compensatory strategies, altering their movement accordingly
    • …
    corecore