6 research outputs found

    Charting Evolution’s Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution

    Get PDF
    For over 100 years, molluscan eyes have been used as an example of convergent evolution and, more recently, as a textbook example of stepwise evolution of a complex lens eye via natural selection. Yet, little is known about the underlying mechanisms that create the eye and generate different morphologies. Assessing molluscan eye diversity and understanding how this diversity came about will be important to developing meaningful interpretations of evolutionary processes. This paper provides an introduction to the myriad of eye types found in molluscs, focusing on some of the more unusual structures. We discuss how molluscan eyes can be applied to the study of evolution by examining patterns of convergent and parallel evolution and provide several examples, including the putative convergence of the camera-type eyes of cephalopods and vertebrates

    Rapid and Accurate Prediction and Scoring of Water Molecules in Protein Binding Sites

    Get PDF
    Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity

    Modulating inhibitory ligand-gated ion channels

    No full text
    The glycine and γ-aminobutyric acid receptors (GlyR and GABAAR, respectively) are the major inhibitory neurotransmitter-gated receptors in the central nervous system of animals. Given the important role of these receptors in neuronal inhibition, they are prime targets of many therapeutic agents and are the object of intense studies aimed at correlating their structure and function. In this review, the structure and dynamics of these and other homologous members of the nicotinicoid superfamily are described. The modulatory actions of the major biological macromolecules that bind and allosterically affect these receptors are also discussed

    Atomic and Molecular Data (Données Atomiques et Moleculaires)

    No full text
    corecore