1,835 research outputs found
Proposed New Antiproton Experiments at Fermilab
Fermilab operates the world's most intense source of antiprotons. Recently
various experiments have been proposed that can use those antiprotons either
parasitically during Tevatron Collider running or after the Tevatron Collider
finishes in about 2010. We discuss the physics goals and prospects of the
proposed experiments.Comment: 6 pages, 2 figures, to appear in Proceedings of IXth International
Conference on Low Energy Antiproton Physics (LEAP'08), Vienna, Austria,
September 16 to 19, 200
A consistent picture for large penguins in D -> pi+ pi-, K+ K-
A long-standing puzzle in charm physics is the large difference between the
D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF
collaborations reported a surprisingly large difference between the direct CP
asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are
naturally related in the Standard Model via s- and d-quark "penguin
contractions". Their sum gives rise to Delta A_CP, while their difference
contributes to the two branching ratios with opposite sign. Assuming nominal
SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay
rates yields large penguin contractions that naturally explain Delta A_CP.
Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure
Superluminal neutrinos in long baseline experiments and SN1987a
Precise tests of Lorentz invariance in neutrinos can be performed using long
baseline experiments such as MINOS and OPERA or neutrinos from astrophysical
sources. The MINOS collaboration reported a measurement of the muonic neutrino
velocities that hints to super-luminal propagation, very recently confirmed at
6 sigma by OPERA. We consider a general parametrisation which goes beyond the
usual linear or quadratic violation considered in quantum-gravitational models.
We also propose a toy model showing why Lorentz violation can be specific to
the neutrino sector and give rise to a generic energy behaviour E^alpha, where
alpha is not necessarily an integer number. Supernova bounds and the preferred
MINOS and OPERA regions show a tension, due to the absence of shape distortion
in the neutrino bunch in the far detector of MINOS. The energy independence of
the effect has also been pointed out by the OPERA results.Comment: 22 pages, 7 figures; comment on Cherenkov emission added, version
matching JHEP published pape
Partially Supersymmetric Composite Higgs Models
We study the idea of the Higgs as a pseudo-Goldstone boson within the
framework of partial supersymmetry in Randall-Sundrum scenarios and their CFT
duals. The Higgs and third generation of the MSSM are composites arising from a
strongly coupled supersymmetric CFT with global symmetry SO(5) spontaneously
broken to SO(4), whilst the light generations and gauge fields are elementary
degrees of freedom whose couplings to the strong sector explicitly break the
global symmetry as well as supersymmetry. The presence of supersymmetry in the
strong sector may allow the compositeness scale to be raised to ~10 TeV without
fine tuning, consistent with the bounds from precision electro-weak
measurements and flavour physics. The supersymmetric flavour problem is also
solved. At low energies, this scenario reduces to the "More Minimal
Supersymmetric Standard Model" where only stops, Higgsinos and gauginos are
light and within reach of the LHC.Comment: 28 pages. v2 minor changes and Refs. adde
Brief Report: AIP Mutation in Pituitary Adenomas in the 18th Century and Today
From New England Journal of Medicine, Volume 364, issue 1, p.43-50. Copyright © (2011) Massachusetts Medical Society. Reprinted with permission.Gigantism results when a growth hormoneâsecreting pituitary adenoma is present
before epiphyseal fusion. In 1909, when Harvey Cushing examined the skeleton of
an Irish patient who lived from 1761 to 1783,1-3 he noted an enlarged pituitary
fossa. We extracted DNA from the patientâs teeth and identified a germline mutation
in the aryl hydrocarbonâinteracting protein gene (AIP). Four contemporary
Northern Irish families who presented with gigantism, acromegaly, or prolactinoma
have the same mutation and haplotype associated with the mutated gene. Using
coalescent theory, we infer that these persons share a common ancestor who lived
about 57 to 66 generations earlier
Mindfulness-based interventions for young offenders: a scoping review
Youth offending is a problem worldwide. Young people in the criminal justice system have frequently experienced adverse childhood circumstances, mental health problems, difficulties regulating emotions and poor quality of life. Mindfulness-based interventions can help people manage problems resulting from these experiences, but their usefulness for youth offending populations is not clear. This review evaluated existing evidence for mindfulness-based interventions among such populations. To be included, each study used an intervention with at least one of the three core components of mindfulness-based stress reduction (breath awareness, body awareness, mindful movement) that was delivered to young people in prison or community rehabilitation programs. No restrictions were placed on methods used. Thirteen studies were included: three randomized controlled trials, one controlled trial, three pre-post study designs, three mixed-methods approaches and three qualitative studies. Pooled numbers (nâ=â842) comprised 99% males aged between 14 and 23. Interventions varied so it was not possible to identify an optimal approach in terms of content, dose or intensity. Studies found some improvement in various measures of mental health, self-regulation, problematic behaviour, substance use, quality of life and criminal propensity. In those studies measuring mindfulness, changes did not reach statistical significance. Qualitative studies reported participants feeling less stressed, better able to concentrate, manage emotions and behaviour, improved social skills and that the interventions were acceptable. Generally low study quality limits the generalizability of these findings. Greater clarity on intervention components and robust mixed-methods evaluation would improve clarity of reporting and better guide future youth offending prevention programs
SUSY Splits, But Then Returns
We study the phenomenon of accidental or "emergent" supersymmetry within
gauge theory and connect it to the scenarios of Split Supersymmetry and Higgs
compositeness. Combining these elements leads to a significant refinement and
extension of the proposal of Partial Supersymmetry, in which supersymmetry is
broken at very high energies but with a remnant surviving to the weak scale.
The Hierarchy Problem is then solved by a non-trivial partnership between
supersymmetry and compositeness, giving a promising approach for reconciling
Higgs naturalness with the wealth of precision experimental data. We discuss
aspects of this scenario from the AdS/CFT dual viewpoint of higher-dimensional
warped compactification. It is argued that string theory constructions with
high scale supersymmetry breaking which realize warped/composite solutions to
the Hierarchy Problem may well be accompanied by some or all of the features
described. The central phenomenological considerations and expectations are
discussed, with more detailed modelling within warped effective field theory
reserved for future work.Comment: 29 pages. Flavor and CP constraints on left-right symmetric structure
briefly discussed. References adde
FCNC Effects in a Minimal Theory of Fermion Masses
As a minimal theory of fermion masses we extend the SM by heavy vectorlike
fermions, with flavor-anarchical Yukawa couplings, that mix with chiral
fermions such that small SM Yukawa couplings arise from small mixing angles.
This model can be regarded as an effective description of the fermionic sector
of a large class of existing flavor models and thus might serve as a useful
reference frame for a further understanding of flavor hierarchies in the SM.
Already such a minimal framework gives rise to FCNC effects through exchange of
massive SM bosons whose couplings to the light fermions get modified by the
mixing. We derive general formulae for these corrections and discuss the bounds
on the heavy fermion masses. Particularly stringent bounds, in a few TeV range,
come from the corrections to the Z couplings.Comment: 19 pages, 1 figur
Flavourful Production at Hadron Colliders
We ask what new states may lie at or below the TeV scale, with sizable
flavour-dependent couplings to light quarks, putting them within reach of
hadron colliders via resonant production, or in association with Standard Model
states. In particular, we focus on the compatibility of such states with
stringent flavour-changing neutral current and electric-dipole moment
constraints. We argue that the broadest and most theoretically plausible
flavour structure of the new couplings is that they are hierarchical, as are
Standard Model Yukawa couplings, although the hierarchical pattern may well be
different. We point out that, without the need for any more elaborate or
restrictive structure, new scalars with "diquark" couplings to standard quarks
are particularly immune to existing constraints, and that such scalars may
arise within a variety of theoretical paradigms. In particular, there can be
substantial couplings to a pair of light quarks or to one light and one heavy
quark. For example, the latter possibility may provide a flavour-safe
interpretation of the asymmetry in top quark production observed at the
Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and
LHC, and argue that their discovery represents one of our best chances for new
insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde
- âŠ