59 research outputs found

    A Biomechanical Approach to Investigate the Applicability of the Lake-Thomas Theory in Porcine Aorta

    Get PDF
    Robot-assisted surgeries are procedures where a physician performs surgical maneuvers by operating a robot. One of the main limitations is the difficulty in transferring the surgeon’s multiple skills onto the robotic system. Such skills include the ability to estimate the maximum applicable force before damaging the tissue. To implement this skill onto a robotic system, a mathematical model for tissue damage must be developed. The objective of this study is to measure the fracture characteristic in porcine aorta, to then investigate whether an existing fracture model can be applied onto biological tissues. Due to the similarity in the mechanical response between biological tissues and polymeric materials, the model chosen for this study was the Lake-Thomas model. This is the first paper with the aim of validating this model with biological tissues. Two main findings are reported in this investigation. We found that porcine thoracic aorta tears in a specific way which is directly correlated to the tensile direction. The second finding is that an anisotropic linear relationship exists between the critical tearing energy and the elastic modulus, and the elastic modulus to the -0.5th power. These results are discussed based on the elastin and collagen fibers, as well as established mathematical equations describing polymer mechanic

    An Optimized Photoelectron Track Reconstruction Method for Photoelectric X-Ray Polarimeters

    Get PDF
    We present a data processing algorithm for angular reconstruction and event selection applied to 2-D photoelectron track images from X-ray polarimeters. The method reconstructs the initial emission angle of a photoelectron from the initial portion of the track, which is obtained by continuously cutting a track until the image moments or number of pixels fall below tunable thresholds. In addition, event selection which rejects round tracks quantified with eccentricity and circularity is performed so that polarimetry sensitivity considering a trade-off between the modulation factor and signal acceptance is maximized. The modulation factors with applying track selection are 26.6 0.4, 46.1 0.4, 62.3 0.4, and 61.8 0.3% at 2.7, 4.5, 6.4, and 8.0 keV, respectively, using the same data previously analyzed by Iwakiri et al. (2016), where the corresponding numbers are 26.90.4, 43.40.4, 54.40.3, and 59.1 0.3%. The method improves polarimeter sensitivity by 5%10% at the high energy end of the band previously presented (Iwakiri et al. 2016)

    First measurement of ν¯μ and νμ charged-current inclusive interactions on water using a nuclear emulsion detector

    Get PDF
    精密測定により素粒子ニュートリノの謎の解明を目指すNINJA実験の物理解析が開始. 京都大学プレスリリース. 2020-10-21.This paper reports the track multiplicity and kinematics of muons, charged pions, and protons from charged-current inclusive ¯νμ and νμ interactions on a water target, measured using a nuclear emulsion detector in the NINJA experiment. A 3-kg water target was exposed to the T2K antineutrino-enhanced beam corresponding to 7.1×1020 protons on target with a mean energy of 1.3 GeV. Owing to the high granularity of the nuclear emulsion, protons with momenta down to 200  MeV/c from the neutrino-water interactions were detected. We find good agreement between the observed data and model predictions for all kinematic distributions other than the number of charged pions and the muon kinematics shapes. These results demonstrate the capability of measurements with nuclear emulsion to improve neutrino interaction models

    Progress of long pulse discharges by ECH in LHD

    Get PDF
    Using ion cyclotron heating and electron cyclotron heating (ECH), or solo ECH, trials of steady state plasma sustainment have been conducted in the superconducting helical/stellarator, large helical device (LHD) (Ida K et al 2015 Nucl. Fusion 55 104018). In recent years, the ECH system has been upgraded by applying newly developed 77 and 154 GHz gyrotrons. A new gas fueling system applied to the steady state operations in the LHD realized precise feedback control of the line average electron density even when the wall condition varied during long pulse discharges. Owing to these improvements in the ECH and the gas fueling systems, a stable 39 min discharge with a line average electron density ne_ave of 1.1  ×  1019 m−3, a central electron temperature Te0 of over 2.5 keV, and a central ion temperature Ti0 of 1.0 keV was successfully performed with ~350 kW EC-waves. The parameters are much improved from the previous 65 min discharge with ne_ave of 0.15  ×  1019 m−3 and Te0 of 1.7 keV, and the 30 min discharge with ne_ave of 0.7  ×  1019 m−3 and Te0 of 1.7 keV
    corecore