21 research outputs found

    Observation of Simultaneous Oscillation of Multiple Modes in a CW 300 GHz Gyrotron

    Get PDF
    Multi-mode oscillation was observed in a 300 GHz fully CW gyrotron. It has been developed and installed in the Research Center for Development of Far-Infrared Region, University of Fukui as a power source of a submillimeter-wave material processing system. This gyrotron delivers 1.75 kW/CW at maximum. The radiation pattern is a Gaussian beam when the magnetic field strength Bc at the cavity is properly adjusted. However, within a range of Bc values, simultaneous oscillation of competing modes is observed, manifesting in radiation of the output power in multiple directions

    Reflections in gyrotrons with axial output

    Get PDF
    Influence of reflections on operation of gyrotrons with axial output is studied both theoretically and experimentally. By way of example the Fukui large orbit gyrotron with a permanent magnet operating in third harmonic at frequency 89 GHz is considered. In the case of strong reflection (|R|=0.6), extreme sensitivity of output power on the reflection phase is found. A qualitative agreement between theory and experiment is observed

    A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet

    Get PDF
    A gyrotron with an axis-encircling electron beam is capable of high-frequency operation, because the high-beam efficiency is kept even at high harmonics of the electron cyclotron frequency. We have designed and constructed such a gyrotron with a permanent magnet. The gyrotron has already operated successfully at the third, fourth, and fifth harmonics. The frequencies are 89.3, 112.7, and 138 GHz, respectively, and the corresponding cavity modes are TE/sub 311/, TE/sub 411/, and TE/sub 511/. The permanent magnet system is quite novel and consists of many magnet elements made of NbFeB and additional coils for controlling the field intensities in the cavity and electron gun regions. The magnetic field in the cavity region can be varied from 0.97 to 1.18 T. At the magnetic field intensities, the output powers at the third and the fourth harmonics are 1.7 and 0.5 kW, respectively. The gyrotron is pulsed, the pulse length is 1 ms and the repetition frequency is 1 Hz. The beam energy is 40 kV and the beam current is 1.2-1.3 A. Beam efficiencies and emission patterns have also been measured. In this paper, the experimental results of the gyrotron are described and compared with computer simulations

    The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging

    No full text
    The gyrotrons are powerful sources of coherent radiation that can operate in both pulsed and CW (continuous wave) regimes. Their recent advancement toward higher frequencies reached the terahertz (THz) region and opened the road to many new applications in the broad fields of high-power terahertz science and technologies. Among them are advanced spectroscopic techniques, most notably NMR-DNP (nuclear magnetic resonance with signal enhancement through dynamic nuclear polarization, ESR (electron spin resonance) spectroscopy, precise spectroscopy for measuring the HFS (hyperfine splitting) of positronium, etc. Other prominent applications include materials processing (e.g., thermal treatment as well as the sintering of advanced ceramics), remote detection of concealed radioactive materials, radars, and biological and medical research, just to name a few. Among prospective and emerging applications that utilize the gyrotrons as radiation sources are imaging and sensing for inspection and control in various technological processes (for example, food production, security, etc). In this paper, we overview the current status of the research in this field and show that the gyrotrons are promising radiation sources for THz sensing and imaging based on both the existent and anticipated novel techniques and methods
    corecore