6,926 research outputs found

    Evaluation of greenwaste mulch to control runoff quality from landfill sites during frequent storms

    Get PDF
    This paper describes a preliminary evaluation of two types of greenwaste (fresh and aged) used as a mulch layer to control runoff from disturbed landfill areas. Fresh greenwaste refers to woody and herbaceous garden waste that has been recently collected, chopped and shredded. Aged greenwaste is greenwaste which has been stockpiled for 18 months. We used rainfall simulator tests to investigate two aspects: (1) the performance of greenwaste mulch in reducing runoff during designed storm events with a high frequency of occurrence and (2) the release of pollutants via runoff as total suspended solids (TSS) and total organic carbon (TOC) during rain. Rainfall of <5-year average recurrence interval (ARI) was generally applied, consistent with stormwater compliance requirements for many Australian landfills. TOC released from fresh greenwaste material was higher in concentration than from aged greenwaste. However when used as a 10cm-deep mulch layer, fresh greenwaste was able to completely prevent runoff, even when tested under rainfalls up to 50 year ARI duration. An equivalent mulch layer of aged greenwaste was also effective in reducing runoff volume and TSS concentration compared with the bare soil during a 3.5-year ARI rainfall, but mean TOC concentration was higher. Based on these preliminary results, fresh greenwaste mulching of bare soils is an attractive option to control runoff and erosion from areas subject to intermittent landfill operations and worthy of further investigations

    Estimation of soil water deficit in an irrigated cotton field with infrared thermography

    Get PDF
    Plant growth and soil water deficit can vary spatially and temporally in crop fields due to variation in soil properties and/or irrigation and crop management factors. We conducted field experiments with cotton (Gossypium hirsutum L.) over two seasons during 2007-2009 to test if infrared thermography can distinguish systematic variation in deficit irrigation applied to various parts of the field over time. Soil water content was measured with a neutron probe and thermal images of crop plants were taken with a thermal infrared camera. Leaf water potential and stomatal conductance were also measured on selected occasions. All measurements were made at fixed locations within three replicate plots of an irrigation experiment consisting of four soil-water deficit treatments. Canopy temperature related as well with soil water within the root zone of cotton as the stomatal conductance index derived from canopy temperature, but it neglected the effect of local and seasonal variation in environmental conditions. Similarities in the pattern of spatial variation in canopy temperature and soil water over the experimental field indicates that thermography can be used with stomatal conductance index to assess soil water deficit in cotton fields for scheduling of irrigation and to apply water in areas within the field where it is most needed to reduce water deficit stress to the crop. Further confidence with application of infrared thermography can be gained by testing our measurement approach and analysis with irrigation scheduling of other crops

    Flux enhancement in the inner region of a geometrically and optically thick accretion disk

    Get PDF
    The surface flux (and the corresponding observed flux) of a geometrically thick ``funnel'' shaped disk is computed taking into account the radiation impinging on the surface from other parts of the disk. It is found that the ratio of the maximum apparent luminosity to the real luminosity of the disk is only a factor ≈5\approx 5 even when the opening angle of the disk is small (≈15o\approx 15^o). Thus, geometrically beamed emission from ``funnel'' shaped sub-Eddington disks around stellar mass black holes, cannot explain the Ultra-Luminous X-ray sources detected in nearby galaxies.Comment: accepted for publication in Ap

    Length and time scale divergences at the magnetization-reversal transition in the Ising model

    Full text link
    The divergences of both the length and time scales, at the magnetization- reversal transition in Ising model under a pulsed field, have been studied in the linearized limit of the mean field theory. Both length and time scales are shown to diverge at the transition point and it has been checked that the nature of the time scale divergence agrees well with the result obtained from the numerical solution of the mean field equation of motion. Similar growths in length and time scales are also observed, as one approaches the transition point, using Monte Carlo simulations. However, these are not of the same nature as the mean field case. Nucleation theory provides a qualitative argument which explains the nature of the time scale growth. To study the nature of growth of the characteristic length scale, we have looked at the cluster size distribution of the reversed spin domains and defined a pseudo-correlation length which has been observed to grow at the phase boundary of the transition.Comment: 9 pages Latex, 3 postscript figure
    • …
    corecore