1,886 research outputs found

    Absorption spectrum of the quasar HS1603+3820 I. Observations and data analysis

    Full text link
    We present the analysis of multi-wavelength observations of bright quasar HS1603+3820: the optical data taken with the MMT and Keck telescopes, and X-ray data obtained with the Chandra X-ray Observatory. The optical spectra contain a very large number of absorption lines from numerous heavy elements. We derived X-ray properties of HS1603. The quasar has the optical-to-X-ray slope index alpha_ox of 1.70, which is on the high end of the typical range for radio quiet QSOs. We found 49 individual heavy element absorption clouds, which can be grouped into eleven distinct systems. We determined column densities and redshifts of the individual components. Absorbers from the associated system which is likely spatially closest to the QSO show large CIV to HI column density ratio, reaching ca.20.Comment: Accepted for publication in A&A, 17 pages, 11 figures, 5 table

    The Wide-Angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554

    Get PDF
    We present results from X-ray observations of the gravitationally lensed z = 1.51 AGN HS 0810+2554 performed with the Chandra X-ray Observatory and XMM-Newton. Blueshifted absorption lines are detected in both observations at rest-frame energies ranging between ~1-12 keV at > 99% confidence. The inferred velocities of the outflowing components range between ~0.1c and ~0.4c. A strong emission line at ~6.8 keV accompanied by a significant absorption line at ~7.8 keV is also detected in the Chandra observation. The presence of these lines is a characteristic feature of a P-Cygni profile supporting the presence of an expanding outflowing highly ionized iron absorber in this quasar. Modeling of the P-Cygni profile constrains the covering factor of the wind to be > 0.6, assuming disk shielding. A disk-reflection component is detected in the XMM-Newton observation accompanied by blueshifted absorption lines. The XMM-Newton observation constrains the inclination angle to be < 45 degrees at 90% confidence, assuming the hard excess is due to blurred reflection from the accretion disk. The detection of an ultrafast and wide-angle wind in an AGN with intrinsic narrow absorption lines (NALs) would suggest that quasar winds may couple efficiently with the intergalactic medium and provide significant feedback if ubiquitous in all NAL and BAL quasars. We estimate the mass-outflow rate of the absorbers to lie in the range of 1.5 and 3.4 Msolar/yr for the two observations. We find the fraction of kinetic to electromagnetic luminosity released by HS 0810+2554 is large (epsilon = 9 (-6,+8)) suggesting that magnetic driving is likely a significant contributor to the acceleration of this outflow.Comment: 27 pages, 13 figures, Accepted for publication in Ap

    DRINet for medical image segmentation

    Get PDF
    Convolutional neural networks (CNNs) have revolutionized medical image analysis over the past few years. The UNet architecture is one of the most well-known CNN architectures for semantic segmentation and has achieved remarkable successes in many different medical image segmentation applications. The U-Net architecture consists of standard convolution layers, pooling layers, and upsampling layers. These convolution layers learn representative features of input images and construct segmentations based on the features. However, the features learned by standard convolution layers are not distinctive when the differences among different categories are subtle in terms of intensity, location, shape, and size. In this paper, we propose a novel CNN architecture, called Dense-Res-Inception Net (DRINet), which addresses this challenging problem. The proposed DRINet consists of three blocks, namely a convolutional block with dense connections, a deconvolutional block with residual Inception modules, and an unpooling block. Our proposed architecture outperforms the U-Net in three different challenging applications, namely multi-class segmentation of cerebrospinal fluid (CSF) on brain CT images, multi-organ segmentation on abdominal CT images, multi-class brain tumour segmentation on MR images

    Leading Temperature Corrections to Fermi Liquid Theory in Two Dimensions

    Full text link
    We calculate the basic parameters of the Fermi Liquid: the scattering vertex, the Landau interaction function, the effective mass, and physical susceptibilities for a model of two-dimensional (2D) fermions with a short ranged interaction at non-zero temperature. The leading temperature dependences of the spin components of the scattering vertex, the Landau function, and the spin susceptibility are found to be linear. T-linear terms in the effective mass and in the ``charge-sector''- quantities are found to cancel to second order in the interaction, but the cancellation is argued not to be generic. The connection with previous studies of the 2D Fermi-Liquid parameters is discussed.Comment: 4 pages, 1 figur

    Time-of-Flight Pulsed Neutron Diffraction of Pd_<0.8>-Si_<0.2> Amorphous Alloy Using the Electron Linac

    Get PDF
    The structure factor S(Q) of Pd_-Si_ amorphous alloy was measured over wide range of Q (=4π sin θ/λ) up to 40 A^ by time-of-flight neutron diffraction using pulsed epithermal-neutron generated from the Tohoku University electron linac. The S(Q) has definitely shown an oscillation even in range of Q≳25 A^. The 1st peak of the pair distribution function Fourier transformed from the S(Q) has been split into two sub-peaks at the position of 2.42 and 2.81 A. Combining the neutron result with the X-ray result, the 1st sub-peak was verified to correspond to Pd-Si pair and the 2nd sub-peak the mixture of Pd-Pd pair and Pd-Si pair where Pd atom was substituted with Si atom. The average numbers of the nearest neighbour atoms around the Pd atom at origin are 1.7 Si atoms in the 1st sub-peak and 10.7 Pd and 1.5 Si atoms in the 2nd sub-peak. There may be no Si-Si pair with the nearest interatomic distance in the alloy. Such a relation for atom-atom pairs is found in the crystalline Pd_3Si compound, too. The liquid structure of the alloy was also measured and concluded to be essentially close to the amorphous structure except more blurring of peaks

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Quantum criticality around metal-insulator transitions of strongly correlated electrons

    Full text link
    Quantum criticality of metal-insulator transitions in correlated electron systems is shownto belong to an unconventional universality class with violation of Ginzburg-Landau-Wilson(GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square latticesare capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transition and with a number of numerical results beyond the mean-field level, implying that the preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. Detailed analyses on the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical "opalescence". Analyses on crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and kappa-ET-type organic conductor provide us with evidences for the existence of the present marginal quantum criticality.Comment: 24 pages, 19 figure

    The UVES Large Program for testing fundamental physics - III. Constraints on the fine-structure constant from 3 telescopes

    Full text link
    Large statistical samples of quasar spectra have previously indicated possible cosmological variations in the fine-structure constant, α\alpha. A smaller sample of higher signal-to-noise ratio spectra, with dedicated calibration, would allow a detailed test of this evidence. Towards that end, we observed equatorial quasar HS 1549++1919 with three telescopes: the Very Large Telescope, Keck and, for the first time in such analyses, Subaru. By directly comparing these spectra to each other, and by `supercalibrating' them using asteroid and iodine-cell tests, we detected and removed long-range distortions of the quasar spectra's wavelength scales which would have caused significant systematic errors in our α\alpha measurements. For each telescope we measure the relative deviation in α\alpha from the current laboratory value, Δα/α\Delta\alpha/\alpha, in 3 absorption systems at redshifts zabs=1.143z_{\mathrm{abs}}=1.143, 1.342, and 1.802. The nine measurements of Δα/α\Delta\alpha/\alpha are all consistent with zero at the 2-σ\sigma level, with 1-σ\sigma statistical (systematic) uncertainties 5.6--24 (1.8--7.0) parts per million (ppm). They are also consistent with each other at the 1-σ\sigma level, allowing us to form a combined value for each telescope and, finally, a single value for this line of sight: Δα/α=5.4±3.3stat±1.5sys\Delta\alpha/\alpha=-5.4 \pm 3.3_{\mathrm{stat}} \pm 1.5_{\mathrm{sys}} ppm, consistent with both zero and previous, large samples. We also average all Large Programme results measuring Δα/α=0.6±1.9stat±0.9sys\Delta\alpha/\alpha=-0.6 \pm 1.9_{\mathrm{stat}} \pm 0.9_{\mathrm{sys}} ppm. Our results demonstrate the robustness and reliability at the 3 ppm level afforded by supercalibration techniques and direct comparison of spectra from different telescopes.Comment: 24 pages, 11 figures, 9 table
    corecore