4 research outputs found
Advanced numerical modelling of seismic response of a propped r.c. diaphragm wall
The paper presents some results from a number of dynamic FE simulations carried out to investigate the seismic response of a propped flexible retaining wall in a dry coarse-grained soil, considering two bedrock acceleration time histories as seismic input. Two dierent soil plasticity models have been considered in this study: an anisotropic hardening, critical state model for cyclic/dynamic loading of sands and the classical Mohr-Coulomb elastic-perfectly plastic model with non-associative flow rule. The results obtained allow to highlight the main features of the seismic performance of such type of flexible retaining structures and to evaluate the effects of the constitutive assumptions made on soil behavior on the predicted wall displacements and structural loads
Time-dependent ground movements induced by shield tunneling in soft clay: a parametric study
In this work, the effects of coupled hydromechanical (consolidation) processes associated with shield tunneling excavation in soft clays are investigated with particular attention to the prediction of ground movements at the ground surface. A series of 2d FE analyses have been carried out in parametric form in order to investigate the effects of tunnel excavation velocity relative to the soil consolidation rate and the hydraulic boundary conditions at the tunnel boundary. The shield advancement process has
been simulated with a simplified procedure incorporating both volume loss and ovalization of the tunnel section. In order to investigate the relative importance of soil consolidation during the excavation process, different characteristic times for the tunnel face advancement and for the consolidation process around the tunnel have been considered, for the two limiting conditions of fully permeable liner and impervious liner. The potential damage induced by the tunnel excavation on existing structures, based on computed ground surface distortions and horizontal deformations, has been found to vary significantly with time during the consolidation process. The results of the simulations allowed to obtain useful information on the minimum tunnel face advancement speed for which the assumption of fully undrained conditions for the soil during the excavations is acceptable, as well as on the speed rang