59 research outputs found

    Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement

    Get PDF
    An optical frequency comb interferometer with a 342-m-long fiber-based optical reference path was developed. The long fiber-based reference path was stabilized to 10−12-order stability by using a fiber noise cancellation technique, and small temperature changes on the millikelvin order were detected by measuring an interferometric phase signal. Pulse number differences of 30 and 61 between the measurement and reference paths were determined precisely, with slight tuning of the 53.4 MHz repetition frequency. Moreover, with pulse number difference of 61, a 6.4-m-wide scanning for the relative pulse position is possible only by 1 MHz repetition frequency tuning, which makes pulses overlapped for arbitrary distance. Such wide-range high-precision delay length scanning can be used to measure arbitrary distances by using a highly stabilized long fiber-based reference path

    High-coherence ultra-broadband bidirectional dual-comb fiber laser

    Get PDF
    Dual-comb spectroscopy has emerged as an attractive spectroscopic tool for high-speed, high-resolution, and high-sensitivity broadband spectroscopy. It exhibits certain advantages when compared to the conventional Fourier-transform spectroscopy. However, the high cost of the conventional system, which is based on two mode-locked lasers and a complex servo system with a common single-frequency laser, limits the applicability of the dual-comb spectroscopy system. In this study, we overcame this problem with a bidirectional dual-comb fiber laser that generates two high-coherence ultra-broadband frequency combs with slightly different repetition rates (frep). The two direct outputs from the single-laser cavity displayed broad spectra of > 50 nm; moreover, an excessively small difference in the repetition rate (< 1.5 Hz) was achieved with high relative stability, owing to passive common-mode noise cancellation. With this slight difference in the repetition rate, the applicable optical spectral bandwidth in dual-comb spectroscopy could attain ~479 THz (~3,888 nm). In addition, we successfully generated high-coherence ultra-broadband frequency combs via nonlinear spectral broadening and detected high signal-to-noise-ratio carrier–envelope offset frequency (fCEO) beat signals using the self-referencing technique. We also demonstrated the high relative stability between the two fCEO beat signals and tunability. To our knowledge, this is the first demonstration of fCEO detection and frequency measurement using a self-referencing technique for a dual-comb fiber laser. The developed high-coherence ultra-broadband dual-comb fiber laser with capability of fCEO detection is likely to be a highly effective tool in practical, high-sensitivity, ultra-broadband applications

    All-polarization-maintaining, polarization-multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror

    Get PDF
    We developed an all-polarization-maintaining, polarization-multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror (NALM) mode-locking mechanism. Owing to the use of the slow and fast axes of a polarization-maintaining fiber (PMF), the dual-frequency combs with slightly different repetition rates from the single-laser cavity are generated at the same center wavelength without extra-cavity nonlinear spectral broadening. The narrow relative beat note between the two frequency combs is obtained with a full-width-at-half-maximum of ~1 kHz in the optical frequency domain. The two frequency combs have high relative stability and mutual coherence owing to passive common-mode noise cancellation

    Mode-filtering technique based on all-fiber-based external cavity for fiber-based optical frequency comb

    Get PDF
    We developed a mode-filtering technique based on the all-fiber-based external cavity for a fiber-based optical frequency comb for high repetition rate (frep) frequency comb, and the carrier envelope offset frequency (fceo) can be detected and stabilized and is robust to environmental fluctuations. To achieve multiplication of the frep with a high multiplication factor using the fiber ring cavity, a long fiber was developed to mitigate the physical limitation inhibiting the shortening of the cavity length. In this study, the length of the fiber cavity was set to 6.7 m (free spectral range = 44.7 MHz) as the fiber-based comb length was 6.1 m. We were able to demonstrate a multiplication factor of 11, i.e., frep increased from 48.7 MHz to 536.0 MHz with a side mode suppression ratio of about 25 dB using the double-pass configuration

    No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb

    Get PDF
    A simultaneously high-precision, wide-range, and ultrafast time-resolution one-shot 3D shape measurement method is presented. Simultaneous times of flight from multiple positions to a target encoded in a chirped optical frequency comb can be obtained from spectral interferometry. We experimentally demonstrate a one-shot imaging profile measurement of a known step height of 480 µm with µm-level accuracy. We further demonstrate the extension of the dynamic range by measuring in one shot a large step height of 3 m while maintaining high accuracy using the accurate pulse-to-pulse separation of the optical frequency comb. The proposed method with its large dynamic range and measurement versatility can be applied to a broad range of applications, including microscopic structures, objects with large size or aspect ratio, and ultrafast time-resolved imaging. This study provides a powerful and versatile tool for 3D measurement, where various ranges of measurement performances can be tailored to demand

    Stepped-Frequency THz-wave Signal Generation From a Kerr Microresonator Soliton Comb

    Full text link
    Optically generated terahertz (THz) oscillators have garnered considerable attention in recent years due to their potential for wide tunability and low phase noise. Here, for the first time, a dissipative Kerr microresonator soliton comb (DKS), which is inherently in a low noise state, is utilized to produce a stepped-frequency THz signal (≈\approx 280 GHz). The frequency of one comb mode from a DKS is scanned through an optical-recirculating frequency-shifting loop (ORFSL) which induces a predetermined frequency step onto the carrier frequency. The scanned signal is subsequently heterodyned with an adjacent comb mode, generating a THz signal in a frequency range that is determined by the repetition frequency of the DKS. The proposed method is proved by proof-of-concept experiments with MHz level electronics, showing a bandwidth of 4.15 GHz with a frequency step of 83 MHz and a period of 16 μ\mus

    High-resolution 3D imaging method using chirped optical frequency combs based on convolution analysis of the spectral interference fringe

    Get PDF
    We applied an imaging optical system and convolution analysis to a one-shot 3D imaging method with a chirped optical frequency comb to greatly improve the transverse spatial resolution and depth accuracy. We obtained the high contrast spectral interference of a diffusive surface using the designed lens system and developed a simple and robust analysis technique using convolution of an obtained the interference fringe. The developed method was demonstrated to realize submicron-level uncertainty for the depth measurement. When applied to the surface structure of a coin, it demonstrated a transverse spatial resolution of 8.98 lp/mm and depth resolution of 0.35 µm

    Precise and highly-sensitive Doppler-free two-photon absorption dual-comb spectroscopy using pulse shaping and coherent averaging for fluorescence signal detection

    Get PDF
    We demonstrated Doppler-free two-photon absorption dual-comb spectroscopy of 5S1/2 - 5D5/2 and 5D3/2 transitions of Rb. We employed simple pulse-shaping of the dual-comb source and eliminated Doppler-broadening backgrounds, which cause fitting errors of the Doppler-free signals. Moreover, to improve sensitivity, we investigated the coherence in dual-comb fluorescence signals and the coherent averaging method was applied to fluorescence dual-comb detection for the first time. The detection sensitivity was significantly improved by coherent averaging to reduce the noise floor. Observed Doppler-free spectra was fitted to Voigt profiles and we performed absolute frequency determination with a precision of about 100 kHz
    • …
    corecore