329 research outputs found

    Exotic vortex lattices in binary repulsive superfluids

    Get PDF
    We investigate a mixture of two repulsively interacting superfluids with different constituent particle masses: m1≠m2. Solutions to the Gross-Pitaevskii equation for homogeneous infinite vortex lattices predict the existence of rich vortex lattice configurations, a number of which correspond to Platonic and Archimedean planar tilings. Some notable geometries include the snub-square, honeycomb, kagome, and herringbone lattice configurations. We present a full phase diagram for the case m2/m1=2 and list a number of geometries that are found for higher integer mass ratios

    Analysis of the first IPTA Mock Data Challenge by the EPTA timing data analysis working group

    Get PDF
    This is a summary of the methods we used to analyse the first IPTA Mock Data Challenge (MDC), and the obtained results. We have used a Bayesian analysis in the time domain, accelerated using the recently developed ABC-method which consists of a form of lossy linear data compression. The TOAs were first processed with Tempo2, where the design matrix was extracted for use in a subsequent Bayesian analysis. We used different noise models to analyse the datasets: no red noise, red noise the same for all pulsars, and individual red noise per pulsar. We sampled from the likelihood with four different samplers: "emcee", "t-walk", "Metropolis-Hastings", and "pyMultiNest". All but emcee agreed on the final result, with emcee failing due to artefacts of the high-dimensionality of the problem. An interesting issue we ran into was that the prior of all the 36 (red) noise amplitudes strongly affects the results. A flat prior in the noise amplitude biases the inferred GWB amplitude, whereas a flat prior in log-amplitude seems to work well. This issue is only apparent when using a noise model with individually modelled red noise for all pulsars. Our results for the blind challenges are in good agreement with the injected values. For the GWB amplitudes we found h_c = 1.03 +/- 0.11 [10^{-14}], h_c = 5.70 +/- 0.35 [10^{-14}], and h_c = 6.91 +/- 1.72 [10^{-15}], and for the GWB spectral index we found gamma = 4.28 +/- 0.20, gamma = 4.35 +/- 0.09, and gamma = 3.75 +/- 0.40. We note that for closed challenge 3 there was quite some covariance between the signal and the red noise: if we constrain the GWB spectral index to the usual choice of gamma = 13/3, we obtain the estimates: h_c = 10.0 +/- 0.64 [10^{-15}], h_c = 56.3 +/- 2.42 [10^{-15}], and h_c = 4.83 +/- 0.50 [10^{-15}], with one-sided 2 sigma upper-limits of: h_c <= 10.98 [10^{-15}], h_c <= 60.29 [10^{-15}], and h_c <= 5.65 [10^{-15}]

    A data analysis library for gravitational wave detection

    No full text
    One of the main goals of Pulsar Timing Arrays (PTAs) is the direct detection of gravitational waves (GWs). A first detection will be a major leap for astronomy and substantial effort is currently going into timing as many pulsars as possible, with the highest possible accuracy. As part of the individual PTA projects, several groups are developing data analysis methods for the final stage of a gravitational-waves search pipeline: the analysis of the timing residuals. Here we report the progress of on-going work to develop, within a Bayesian framework, a comprehensive and user friendly analysis library to search for gravitational waves in PTA data

    The Local Nanohertz Gravitational-Wave Landscape From Supermassive Black Hole Binaries

    Full text link
    Supermassive black hole binaries (SMBHBs) in the 10 million to 10 billion M⊙M_\odot range form in galaxy mergers, and live in galactic nuclei with large and poorly constrained concentrations of gas and stars. There are currently no observations of merging SMBHBs--- it is in fact possible that they stall at their final parsec of separation and never merge. While LIGO has detected high frequency GWs, SMBHBs emit GWs in the nanohertz to millihertz band. This is inaccessible to ground-based interferometers, but possible with Pulsar Timing Arrays (PTAs). Using data from local galaxies in the 2 Micron All-Sky Survey, together with galaxy merger rates from Illustris, we find that there are on average 91±791\pm7 sources emitting GWs in the PTA band, and 7±27\pm2 binaries which will never merge. Local unresolved SMBHBs can contribute to GW background anisotropy at a level of ∼20%\sim20\%, and if the GW background can be successfully isolated, GWs from at least one local SMBHB can be detected in 10 years.Comment: submitted to Nature Astronomy (reformatted for arXiv

    Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background

    Get PDF
    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ∼2–90  nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations

    Observing the dynamics of super-massive black hole binaries with Pulsar Timing Arrays

    Full text link
    Pulsar Timing Arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here we show that the detection of gravitational radiation from individually resolvable super-massive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave induced timing fluctuations both at the pulsar and at the Earth are detected. This in turn provides a map of the non-linear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of super-massive black holes. We discuss the potential, the challenges and the limitations of these observations.Comment: 5 pages, 1 figur

    Sturm-Liouville operators on time scales

    Full text link
    We establish the connection between Sturm-Liouville equations on time scales and Sturm--Liouville equations with measure-valued coefficients. Based on this connection we generalize several results for Sturm-Liouville equations on time scales which have been obtained by various authors in the past.Comment: 12 page

    Are we there yet? Time to detection of nanohertz gravitational waves based on pulsar-timing array limits

    Get PDF
    Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (~10^(−15) strain at f = 1 yr^(−1)). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates, deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ~80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years

    European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries

    Get PDF
    We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest European Pulsar Timing Array (EPTA) data set, which consists of ultraprecise timing data on 41-ms pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95 per cent upper limit on the sky-averaged strain amplitude lies in the range 6 × 10^(−15) 10^9M_⊙ out to a distance of about 25 Mpc, and with M_c>10^(10)M_⊙ out to a distance of about 1Gpc (z ≈ 0.2). We show that state-of-the-art SMBHB population models predict <1 per cent probability of detecting a CGW with the current EPTA data set, consistent with the reported non-detection. We stress, however, that PTA limits on individual CGW have improved by almost an order of magnitude in the last five years. The continuing advances in pulsar timing data acquisition and analysis techniques will allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming years

    Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    Get PDF
    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, evaluated at discrete times during Earth's rotational and orbital motion around the Sun. We demonstrate the feasibility of this approach for some simple simulated backgrounds (a single point source and spatially-extended distributions having only grad or curl components), calculating maximum-likelihood sky maps and uncertainty maps based on the (pseudo)inverse of the response matrix. The distinction between this approach and standard methods for mapping gravitational-wave power is also discussed.Comment: 22 pages, 11 figure
    • …
    corecore