4,667 research outputs found
Casimir Energies and Pressures for -function Potentials
The Casimir energies and pressures for a massless scalar field associated
with -function potentials in 1+1 and 3+1 dimensions are calculated. For
parallel plane surfaces, the results are finite, coincide with the pressures
associated with Dirichlet planes in the limit of strong coupling, and for weak
coupling do not possess a power-series expansion in 1+1 dimension. The relation
between Casimir energies and Casimir pressures is clarified,and the former are
shown to involve surface terms. The Casimir energy for a -function
spherical shell in 3+1 dimensions has an expression that reduces to the
familiar result for a Dirichlet shell in the strong-coupling limit. However,
the Casimir energy for finite coupling possesses a logarithmic divergence first
appearing in third order in the weak-coupling expansion, which seems
unremovable. The corresponding energies and pressures for a derivative of a
-function potential for the same spherical geometry generalizes the TM
contributions of electrodynamics. Cancellation of divergences can occur between
the TE (-function) and TM (derivative of -function) Casimir
energies. These results clarify recent discussions in the literature.Comment: 16 pages, 1 eps figure, uses REVTeX
Pressure induced superconductivity in CaFeAs
CaFeAs has been found to be exceptionally sensitive to the
application of hydrostatic pressure and superconductivity has been found to
exist in a narrow pressure region that appears to be at the interface between
two different phase transitions. The pressure - temperature () phase
diagram of CaFeAs reveals that this stoichiometric, highly ordered,
compound can be easily tuned to reveal all the salient features associated with
FeAs-based superconductivity without introducing any disorder. Whereas at
ambient pressure CaFeAs does not superconduct for K and
manifests a first order structural phase transition near K, the
application of kbar hydrostatic pressure fully suppresses the
resistive signature of the structural phase transition and instead
superconductivity is detected for K. For kbar a different
transition is detected, one associated with a clear reduction in resistivity
and for kbar superconductivity is no longer detected. This higher
pressure transition temperature increases rapidly with increasing pressure,
exceeding 300 K by kbar. The low temperature, superconducting dome
is centered around 5 kbar, extending down to 2.3 kbar and up to 8.6 kbar. This
superconducting phase appears to exist when the low pressure transition is
suppressed sufficiently, but before the high pressure transition has reduced
the resistivity, and possibly the associated fluctuations, too dramatically
Active Exterior Cloaking
A new method of cloaking is presented. For two-dimensional quasistatics it is
proven how a single active exterior cloaking device can be used to shield an
object from surrounding fields, yet produce very small scattered fields. The
problem is reduced to finding a polynomial which is approximately one within
one disk and zero within a second disk, and such a polynomial is constructed.
For the two-dimensional Helmholtz equation, it is numerically shown that three
active exterior devices placed around the object suffice to produce very good
cloaking.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Neural Networks for Modeling and Control of Particle Accelerators
We describe some of the challenges of particle accelerator control, highlight
recent advances in neural network techniques, discuss some promising avenues
for incorporating neural networks into particle accelerator control systems,
and describe a neural network-based control system that is being developed for
resonance control of an RF electron gun at the Fermilab Accelerator Science and
Technology (FAST) facility, including initial experimental results from a
benchmark controller.Comment: 21 p
Redefining critical autism studies: A more inclusive interpretation
This article explores the definition of Critical Autism Studies and its inclusion in autistic scholarship. There has been critique of recent non-autistic literature for lacking autistic authorship, leading to doubts about its epistemological integrity due to misrepresentations of autistic culture and the neurodiversity movement. This article utilises the work of Arnold, Milton and O’Dell et al. to introduce an emancipatory definition to ensure the discipline is autistic led. In the process, we discuss the nature of autism studies and what constitutes critical literature. We propose Waltz’s interpretation of Critical Autism Studies as a working definition
Deep Saturated Free Electron Laser Oscillators and Frozen Spikes
We analyze the behavior of Free Electron Laser (FEL) oscillators operating in
the deep saturated regime and point out the formation of sub-peaks of the
optical pulse. They are very stable configurations, having a width
corresponding to a coherence length. We speculate on the physical mechanisms
underlying their growth and attempt an identification with FEL mode locked
structures associated with Super Modes. Their impact on the intra-cavity
nonlinear harmonic generation is also discussed along with the possibility of
exploiting them as cavity out-coupler.Comment: 28 page
The Adler Function for Light Quarks in Analytic Perturbation Theory
The method of analytic perturbation theory, which avoids the problem of
ghost-pole type singularities and gives a self-consistent description of both
spacelike and timelike regions, is applied to describe the "light" Adler
function corresponding to the non-strange vector channel of the inclusive decay
of the lepton. The role of threshold effects is investigated. The
behavior of the quark-antiquark system near threshold is described by using a
new relativistic resummation factor. It is shown that the method proposed leads
to good agreement with the ``experimental'' Adler function down to the lowest
energy scale.Comment: 13 pages, one ps figure, REVTe
The few-body problem in terms of correlated gaussians
In their textbook, Suzuki and Varga [Y. Suzuki and K. Varga, {\em Stochastic
Variational Approach to Quantum-Mechanical Few-Body Problems} (Springer,
Berlin, 1998)] present the stochastic variational method in a very exhaustive
way. In this framework, the so-called correlated gaussian bases are often
employed. General formulae for the matrix elements of various operators can be
found in the textbook. However the Fourier transform of correlated gaussians
and their application to the management of a relativistic kinetic energy
operator are missing and cannot be found in the literature. In this paper we
present these interesting formulae. We give also a derivation for new
formulations concerning central potentials; the corresponding formulae are more
efficient numerically than those presented in the textbook.Comment: 10 page
Experimental Setup for the Measurement of the Thermoelectric Power in Zero and Applied Magnetic Field
An experimental setup was developed for the measurement of the thermoelectric
power (TEP, Seebeck coefficient) in the temperature range from 2 to 350 K and
magnetic fields up to 140 kOe. The system was built to fit in a commercial
cryostat and is versatile, accurate and automated; using two heaters and two
thermometers increases the accuracy of the TEP measurement. High density data
of temperature sweeps from 2 to 350 K can be acquired in under 16 hours and
high density data of isothermal field sweeps from 0 to 140 kOe can be obtained
in under 2 hours. Calibrations for the system have been performed on a platinum
wire and BiSrCaCuO high superconductors.
The measured TEP of phosphor-bronze (voltage lead wire) turns to be very small,
where the absolute TEP value of phosphor-bronze wire is much less than 0.5
V/K below 80 K. For copper and platinum wires measured against to the
phosphor-bronze wire, the agreement between measured results and the literature
data is good. To demonstrate the applied magnetic field response of the system,
we report measurements of the TEP on single crystal samples of LaAgSb and
CeAgSb in fields up to 140 kOe.Comment: 10 pages, 8 figures. accepted in Measurement Science and Technolog
Attractive Casimir effect in an infrared modified gluon bag model
In this work, we are motivated by previous attempts to derive the vacuum
contribution to the bag energy in terms of familiar Casimir energy calculations
for spherical geometries. A simple infrared modified model is introduced which
allows studying the effects of the analytic structure as well as the geometry
in a clear manner. In this context, we show that if a class of infrared
vanishing effective gluon propagators is considered, then the renormalized
vacuum energy for a spherical bag is attractive, as required by the bag model
to adjust hadron spectroscopy.Comment: 7 pages. 1 figure. Accepted for publication in Physical Review D.
Revised version with improved analysis and presentation, references adde
- …