398 research outputs found
Effective representation of RT-LOTOS terms by finite time petri nets
The paper describes a transformational approach for the
specification and formal verification of concurrent and real-time systems. At upper level, one system is specified using the timed process algebra RT-LOTOS. The output of the proposed transformation is a Time Petri net (TPN). The paper particularly shows how a TPN can be automatically constructed from an RT-LOTOS specification using a compositionally defined mapping. The proof of the translation consistency is sketched in the paper and developed in [1]. The RT-LOTOS to TPN translation patterns formalized in the paper are being implemented. in a prototype tool. This enables reusing TPNs verification techniques and tools for the profit of RT-LOTOS
Sigref – A Symbolic Bisimulation Tool Box
We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation.
We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description.
This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information
Perceptions of Electoral Fairness and Voter Turnout
Previous research has established a link between turnout and the extent to which voters are faced with a “meaningful” partisan choice in elections; this study extends the logic of this argument to perceptions of the “meaningfulness” of electoral conduct. It hypothesizes that perceptions of electoral integrity are positively related to turnout. The empirical analysis to test this hypothesis is based on aggregate-level data from 31 countries, combined with survey results from Module 1 of the Comparative Study of Electoral Systems survey project, which includes new and established democracies. Multilevel modeling is employed to control for a variety of individual- and election-level variables that have been found in previous research to influence turnout. The results of the analysis show that perceptions of electoral integrity are indeed positively associated with propensity to vote. </jats:p
Batalin-Vilkovisky Integrals in Finite Dimensions
The Batalin-Vilkovisky method (BV) is the most powerful method to analyze
functional integrals with (infinite-dimensional) gauge symmetries presently
known. It has been invented to fix gauges associated with symmetries that do
not close off-shell. Homological Perturbation Theory is introduced and used to
develop the integration theory behind BV and to describe the BV quantization of
a Lagrangian system with symmetries. Localization (illustrated in terms of
Duistermaat-Heckman localization) as well as anomalous symmetries are discussed
in the framework of BV.Comment: 35 page
A thread calculus with molecular dynamics
We present a theory of threads, interleaving of threads, and interaction
between threads and services with features of molecular dynamics, a model of
computation that bears on computations in which dynamic data structures are
involved. Threads can interact with services of which the states consist of
structured data objects and computations take place by means of actions which
may change the structure of the data objects. The features introduced include
restriction of the scope of names used in threads to refer to data objects.
Because that feature makes it troublesome to provide a model based on
structural operational semantics and bisimulation, we construct a projective
limit model for the theory.Comment: 47 pages; examples and results added, phrasing improved, references
replace
A Stochastic Broadcast Pi-Calculus
In this paper we propose a stochastic broadcast PI-calculus which can be used
to model server-client based systems where synchronization is always governed
by only one participant. Therefore, there is no need to determine the joint
synchronization rates. We also take immediate transitions into account which is
useful to model behaviors with no impact on the temporal properties of a
system. Since immediate transitions may introduce non-determinism, we will show
how these non-determinism can be resolved, and as result a valid CTMC will be
obtained finally. Also some practical examples are given to show the
application of this calculus.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane
We discuss the electrostatic contribution to the elastic moduli of a cell or
artificial membrane placed in an electrolyte and driven by a DC electric field.
The field drives ion currents across the membrane, through specific channels,
pumps or natural pores. In steady state, charges accumulate in the Debye layers
close to the membrane, modifying the membrane elastic moduli. We first study a
model of a membrane of zero thickness, later generalizing this treatment to
allow for a finite thickness and finite dielectric constant. Our results
clarify and extend the results presented in [D. Lacoste, M. Cosentino
Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by
providing a physical explanation for a destabilizing term proportional to
\kps^3 in the fluctuation spectrum, which we relate to a nonlinear ()
electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent
studies of ICEO have focused on electrodes and polarizable particles, where an
applied bulk field is perturbed by capacitive charging of the double layer and
drives flow along the field axis toward surface protrusions; in contrast, we
predict "reverse" ICEO flows around driven membranes, due to curvature-induced
tangential fields within a non-equilibrium double layer, which hydrodynamically
enhance protrusions. We also consider the effect of incorporating the dynamics
of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ
- …