333 research outputs found

    Non-hermitean delocalization in an array of wells with variable-range widths

    Full text link
    Nonhermitean hamiltonians of convection-diffusion type occur in the description of vortex motion in the presence of a tilted magnetic field as well as in models of driven population dynamics. We study such hamiltonians in the case of rectangular barriers of variable size. We determine Lyapunov exponent and wavenumber of the eigenfunctions within an adiabatic approach, allowing to reduce the original d=2 phase space to a d=1 attractor. PACS numbers:05.70.Ln,72.15Rn,74.60.GeComment: 20 pages,10 figure

    Reaction-diffusion systems and nonlinear waves

    Full text link
    The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne, Hurd, and Kenkre (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. The importance of the derived results lies in the fact that numerous results on fractional reaction, fractional diffusion, anomalous diffusion problems, and fractional telegraph equations scattered in the literature can be derived, as special cases, of the results investigated in this article.Comment: LaTeX, 16 pages, corrected typo

    Solution of generalized fractional reaction-diffusion equations

    Full text link
    This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the H-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.Comment: LaTeX, 18 pages, corrected typo

    Plasmon-pole approximation for semiconductor quantum wire electrons

    Full text link
    We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor quantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum wire systems than in higher dimensional systems because of severe phase-space restrictions on particle-hole excitations in one dimension. As examples, we use the plasmon-pole approximation to calculate the electron self-energy due to the Coulomb interaction and the hot-electron energy relaxation rate due to LO-phonon emission in GaAs quantum wires. We find that the plasmon-pole approximation works extremely well as compared with more complete many-body calculations.Comment: 16 pages, RevTex, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Fractional reaction-diffusion equations

    Full text link
    In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of general nature and include the results reported earlier by many authors, notably by Jespersen, Metzler, and Fogedby (1999) for anomalous diffusion and del-Castillo-Negrete, Carreras, and Lynch (2003) for reaction-diffusion systems with L\'evy flights. The solution has been developed in terms of the H-function in a compact form with the help of Laplace and Fourier transforms. Most of the results obtained are in a form suitable for numerical computation.Comment: LaTeX, 17 pages, corrected typo

    Magnetoresistance of Two-Dimensional Fermions in a Random Magnetic Field

    Get PDF
    We perform a semiclassical calculation of the magnetoresistance of spinless two-dimensional fermions in a long-range correlated random magnetic field. In the regime relevant for the problem of the half filled Landau level the perturbative Born approximation fails and we develop a new method of solving the Boltzmann equation beyond the relaxation time approximation. In absence of interactions, electron density modulations, in-plane fields, and Fermi surface anisotropy we obtain a quadratic negative magnetoresistance in the weak field limit.Comment: 12 pages, Latex, no figures, Nordita repor

    Thermodynamic properties of the d-density wave order in cuprates

    Full text link
    We solve a popular effective Hamiltonian of competing dd-density wave and d-wave superconductivity orders self-consistently at the mean-field level for a wide range of doping and temperature. The theory predicts a temperature dependence of the dd-density wave order parameter seemingly inconsistent with the neutron scattering and μ\muSR experiments of the cuprates. We further calculate thermodynamic quantities, such as chemical potential, entropy and specific heat. Their distinct features can be used to test the existence of the dd-density wave order in cuprates.Comment: changed to 4 pages and 4 figures. More reference added. Accepted by Phys. Rev.

    Polarization properties of four-wave mixing in strained semiconductor optical amplifiers

    Full text link

    Spinless particle in rapidly fluctuating random magnetic field

    Full text link
    We study a two-dimensional spinless particle in a disordered gaussian magnetic field with short time fluctuations, by means of the evolution equation for the density matrix ; in this description the two coordinates are associated with the retarded and advanced paths respectively. The static part of the vector potential correlator is assumed to grow with distance with a power hh; the case h=0h = 0 corresponds to a δ\delta-correlated magnetic field, and h=2h = 2 to free massless field. The value h=2h = 2 separates two different regimes, diffusion and logarithmic growth respectively. When h<2h < 2 the baricentric coordinate r=(1/2)(x(1)+x(2))r = (1/2)(x^{(1)} + x^{(2)}) diffuses with a coefficient DrD_{r} proportional to xhx^{-h}, where xx is the relative coordinate: x=x(1)x(2)x = x^{(1)} - x^{(2)}. As h>2h > 2 the correlator of the magnetic field is a power of distance with positive exponent; then the coefficient DrD_{r} scales as x2x^{-2}. The density matrix is a function of rr and x2/tx^2/t,and its width in rr grows for large times proportionally to log(t/x2)log(t/x^2).Comment: latex2e; 2 figure

    Ballistic electron motion in a random magnetic field

    Full text link
    Using a new scheme of the derivation of the non-linear σ\sigma-model we consider the electron motion in a random magnetic field (RMF) in two dimensions. The derivation is based on writing quasiclassical equations and representing their solutions in terms of a functional integral over supermatrices QQ with the constraint Q2=1Q^2=1. Contrary to the standard scheme, neither singling out slow modes nor saddle-point approximation are used. The σ\sigma-model obtained is applicable at the length scale down to the electron wavelength. We show that this model differs from the model with a random potential (RP).However, after averaging over fluctuations in the Lyapunov region the standard σ\sigma-model is obtained leading to the conventional localization behavior.Comment: 10 pages, no figures, to be submitted in PRB v2: Section IV is remove
    corecore