3,542 research outputs found
Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX
The gyrokinetic turbulence code GS2 was used to investigate the effects of
plasma beta on linear, collisionless ion temperature gradient (ITG) modes and
trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX)
geometry. Plasma beta affects stability in two ways: through the equilibrium
and through magnetic fluctuations. The first was studied here by comparing ITG
and TEM stability in two NCSX equilibria of differing beta values, revealing
that the high beta equilibrium was marginally more stable than the low beta
equilibrium in the adiabatic-electron ITG mode case. However, the high beta
case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and
electromagnetic ITG and TEM mode growth rate dependencies on temperature
gradient and density gradient were qualitatively similar. The second beta
effect is demonstrated via electromagnetic ITG growth rates' dependency on
GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and
GKV-X is also presented.Comment: Submitted to Physics of Plasmas. 9 pages, 27 figure
A peptide with N-terminal histidine and C-terminal isoleucine amide (PHI) and vasoactive intestinal peptide (VIP) are copackaged in myenteric neurones of the guinea pig ileum.
When cytoplasmic extracts of the myenteric plexus of guinea pig ileum are submitted to centrifugal density gradient separation in a zonal rotor, conditions which separate storage particles containing substance P, somatostatin and VIP from each other, PHI copurifies with VIP. The two immunoreactivities cannot be separated by particle exclusion chromatography, which depends on size rather than density. It is concluded that the posttranslational cleavage of the propeptide or precursor to PHI and VIP occurs after packaging into these storage particles
An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear
The first nonlinear gyrokinetic simulations of electron internal transport
barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed
magnetic shear can suppress thermal transport by increasing the nonlinear
critical gradient for electron-temperature-gradient-driven turbulence to three
times its linear critical value. An interesting feature of this turbulence is
nonlinearly driven off-midplane radial streamers. This work reinforces the
experimental observation that magnetic shear is likely an effective way of
triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure
An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear
The first nonlinear gyrokinetic simulations of electron internal transport
barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed
magnetic shear can suppress thermal transport by increasing the nonlinear
critical gradient for electron-temperature-gradient-driven turbulence to three
times its linear critical value. An interesting feature of this turbulence is
nonlinearly driven off-midplane radial streamers. This work reinforces the
experimental observation that magnetic shear is likely an effective way of
triggering and sustaining e-ITBs in magnetic fusion devices.Comment: 4 pages, 5 figure
Projectile-shape dependence of impact craters in loose granular media
We report on the penetration of cylindrical projectiles dropped from rest
into a dry, noncohesive granular medium. The cylinder length, diameter,
density, and tip shape are all explicitly varied. For deep penetrations, as
compared to the cylinder diameter, the data collapse onto a single scaling law
that varies as the 1/3 power of the total drop distance, the 1/2 power of
cylinder length, and the 1/6 power of cylinder diameter. For shallow
penetrations, the projectile shape plays a crucial role with sharper objects
penetrating deeper.Comment: 3 pages, 3 figures; experimen
Molecular and biochemical characterization of a new thermostable bacterial laccase from<i> Meiothermus ruber</i> DSM 1279
A new bacterial laccase gene (mrlac) fromMeiothermus ruberDSM 1279 was successfully overexpressed to produce a laccase (Mrlac) in soluble form inEscherichia coliduring simultaneous overexpression of a chaperone protein (GroEL/ES).</p
Dynamics of grain ejection by sphere impact on a granular bed
The dynamics of grain ejection consecutive to a sphere impacting a granular
material is investigated experimentally and the variations of the
characteristics of grain ejection with the control parameters are
quantitatively studied. The time evolution of the corona formed by the ejected
grains is reported, mainly in terms of its diameter and height, and favourably
compared with a simple ballistic model. A key characteristic of the granular
corona is that the angle formed by its edge with the horizontal granular
surface remains constant during the ejection process, which again can be
reproduced by the ballistic model. The number and the kinetic energy of the
ejected grains is evaluated and allows for the calculation of an effective
restitution coefficient characterizing the complex collision process between
the impacting sphere and the fine granular target. The effective restitution
coefficient is found to be constant when varying the control parameters.Comment: 9 page
Coupled-barrier diffusion: the case of oxygen in silicon
Oxygen migration in silicon corresponds to an apparently simple jump between
neighboring bridge sites. Yet, extensive theoretical calculations have so far
produced conflicting results and have failed to provide a satisfactory account
of the observed eV activation energy. We report a comprehensive set of
first-principles calculations that demonstrate that the seemingly simple oxygen
jump is actually a complex process involving coupled barriers and can be
properly described quantitatively in terms of an energy hypersurface with a
``saddle ridge'' and an activation energy of eV. Earlier
calculations correspond to different points or lines on this hypersurface.Comment: 4 Figures available upon request. Accepted for publication in Phys.
Rev. Let
- …