10 research outputs found

    Optimal geometric parameters of ordered arrays of nanoprisms for enhanced sensitivity in localized plasmon based sensors

    No full text
    Plasmonic sensors based on ordered arrays of nanoprisms are optimized in terms of their geometric parameters like size, height, aspect ratio for Au, Ag or Au0.5-Ag0.5 alloy to be used in the visible or near IR spectral range. The two figures of merit used for the optimization are the bulk and the surface sensitivity: the first is important for optimizing the sensing to large volume analytes whereas the latter is more important when dealing with small bio-molecules immobilized in close proximity to the nanoparticle surface. A comparison is made between experimentally obtained nanoprisms arrays and simulated ones by using Finite Elements Methods (FEM) techniques

    Rare-earth fluorescence thermometry of laser-induced plasmon heating in silver nanoparticles arrays

    No full text
    The laser-induced plasmon heating of an ordered array of silver nanoparticles, under continuous illumination with an Ar laser, was probed by rare-earth fluorescence thermometry. The rise in temperature in the samples was monitored by measuring the temperature-sensitive photoluminescent emission of a europium complex (EuTTA) embedded in PMMA thin-films, deposited onto the nanoparticles array. A maximum temperature increase of 19 \ub0C was determined upon resonant illumination with the surface plasmon resonance of the nanoarray at the highest pump Ar laser power (173 mW). The experimental results were supported by finite elements method electrodynamic simulations, which provided also information on the temporal dynamics of the heating process. This method proved to be a facile and accurate approach to probe the actual temperature increase due to photo-induced plasmon heating in plasmonic nanosystems

    Amplified sensitization of Er3+ luminescence in silica by AuN quantum clusters upon annealing in a reducing atmosphere

    No full text
    AuN quantum cluster sensitization of Er3+ photoemission in silica is boosted by H passivation of Si dangling bonds around the clusters.</p

    Degenerately Doped Metal Oxide Nanocrystals as Plasmonic and Chemoresistive Gas Sensors

    No full text
    Highly doped wide band gap metal oxide nanocrystals have recently been proposed as building blocks for applications as transparent electrodes, electrochromics, plasmonics, and optoelectronics in general. Here we demonstrate the application of gallium-doped zinc oxide (GZO) nanocrystals as novel plasmonic and chemiresistive sensors for the detection of hazardous gases including hydrogen (H2) and nitrogen dioxide (NO2). GZO nanocrystals with a tunable surface plasmon resonance in the near-infrared are obtained using a colloidal heat-up synthesis. Thanks to the strong sensitivity of the plasmon resonances to chemical and electrical changes occurring at the surface of the nanocrystals, such optical features can be used to detect the presence of toxic gases. By monitoring the changes in the dopant-induced plasmon resonance in the near-infrared, we demonstrate that GZO thin films prepared depositing an assembly of highly doped GZO colloids are able to optically detect both oxidizing and reducing gases at mild (&lt;100 °C) operating temperatures. Combined optical and electrical measurements show that trivalent dopants within ZnO nanocrystals enhance the gas sensing response compared to undoped ZnO. Moreover, improved sub-ppm of NO2 gas sensitivity is achieved by activating the sensors response through combined purple-blue (lambda = 430 nm) light irradiation and mild heating at 75 °C. In addition, these thin films based on degenerately doped semiconductors are highly transparent in the visible range, enabling the fabrication of &quot;invisible&quot; gas sensors. The use of highly doped semiconductive nanocrystals for both IR plasmonic and chemiresistive sensors represent a marked advancement toward the development of highly sensitive and selective devices

    Energy-transfer from ultra-small Au nanoclusters to Er3+ ions: a short-range mechanism

    No full text
    Sub-nanometric Au nanoclusters are known to act as very efficient sensitizers for the luminescent emission of Er3+ ions in silica through a non-resonant broad-band energy-transfer mechanism. In the present work the energy-transfer process is investigated in detail by room temperature photoluminescence characterization of Er and Au co-implanted silica systems in which a different degree of coupling between Er3+ ions and Au nanoclusters is obtained. The results allow us to definitely demonstrate the short-range nature of the interaction in agreement with non-radiative energy-transfer mechanisms. Moreover, an upper limit to the interaction length is also set by the Au-Au intercluster semi-distance which is smaller than 2.4 nm in the present case

    Au–Ag nanoalloy molecule-like clusters for enhanced quantum efficiency emission of Er3+ ions in silica

    No full text
    The occurrence of a very efficient non-resonant energy transfer process forming ultrasmall Au–Ag nanoalloy clusters and Er3+ ions is investigated in silica. The enhancement of the room temperature Er3+ emission efficiency by an order of magnitude is achieved by coupling rare-earth ions to molecule-like (AuxAg1x)N alloy nanoclusters with N = 10–15 atoms and x = 0.6 obtained by optimized sequential ion implantation on Er-implanted silica. For comparison, AuN nanoclusters obtained by the same approach and with the same size and numerical density showed an enhancement by only a factor of 2 with respect to pure Er emission, demonstrating the beneficial effect of using nanoalloyed clusters. The temperature evolution of the energy transfer process is investigated by photoluminescence and exhibits a maximum efficiency at about 600 °C, where the clusters reach the optimal size and the silica matrix completely recovers the implantation damage. The nanoalloy cluster composition and size have been studied by EXAFS analysis, which indicated a stronger Ag–O interaction with respect to the Au–O one and a preferential location of the Ag atoms at the nanoalloy cluster surface

    Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays

    No full text
    The nonlinear absorption properties of bidimensional arrays of Au-Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties. Moreover, a tunable changeover from reverse saturable absorption (RSA) to saturable absorption (SA) can be obtained by properly controlling the bimetallic composition of the nanoprisms, without modifying the overall morphology of the nanosystems. This capability makes these nanosystems extremely interesting for the realization of solid-state nanophotonic devices with enhanced ultrafast nonlinear optical properties

    Spectral dependence of nonlinear absorption in ordered silver metallic nanoprism arrays

    No full text
    Ordered metallic nanoprism arrays have been proposed as novel and versatile systems for the observation of nonlinear effects such as nonlinear absorption. The study of the effect of the local field reinforcement on the fast optical third order nonlinear response around the Surface Plasmon Resonance is of great interest for many plasmonic applications. In this work, silver nanoprism arrays have been synthesized by the nanosphere lithography method. A low repetition rate tunable picosecond laser source was used to study the irradiance and wavelength dependence of the nonlinear absorption properties around the dipolar and quadrupolar resonances of the nanoarray with the use of the z-scan technique. The irradiance dependence of the on-resonance nonlinearity was studied, and a spectral region where nonlinear absorption is negligible was identified. This is important for the possible application of these materials in optical information processing devices

    Wavelength- and polarization-dependent nonlinear optical properties of plasmonic nanoprism arrays

    No full text
    The nonlinear absorption properties of Ag nanoprism arrays synthesized by nanosphere lithography have been investigated by z-scan measurements. A picoseconds and low repetition rate laser source has been used to excite the electronic component of the nonlinear optical response without inducing thermal effects on the samples. Spectral effects in the nonlinear absorption response have been highlighted by performing measurements at different wavelengths, matching the laser wavelength with the dipolar and the quadrupolar surface plasmon resonances of the synthesized nanoarrays. The nonlinear absorption properties of the samples have been also investigated as a function of the polarization of the laser source and dichroism effects have been revealed
    corecore