41 research outputs found

    Interfacing GHz-bandwidth heralded single photons with a room-temperature Raman quantum memory

    Full text link
    Photonics is a promising platform for quantum technologies. However, photon sources and two-photon gates currently only operate probabilistically. Large-scale photonic processing will therefore be impossible without a multiplexing strategy to actively select successful events. High time-bandwidth-product quantum memories - devices that store and retrieve single photons on-demand - provide an efficient remedy via active synchronisation. Here we interface a GHz-bandwidth heralded single-photon source and a room-temperature Raman memory with a time-bandwidth product exceeding 1000. We store heralded single photons and observe a clear influence of the input photon statistics on the retrieved light, which agrees with our theoretical model. The preservation of the stored field's statistics is limited by four-wave-mixing noise, which we identify as the key remaining challenge in the development of practical memories for scalable photonic information processing

    Enhancing multiphoton rates with quantum memories

    Get PDF
    Single photons are a vital resource for optical quantum information processing. Efficient and deterministic single photon sources do not yet exist, however. To date, experimental demonstrations of quantum processing primitives have been implemented using non-deterministic sources combined with heralding and/or postselection. Unfortunately, even for eight photons, the data rates are already so low as to make most experiments impracticable. It is well known that quantum memories, capable of storing photons until they are needed, are a potential solution to this `scaling catastrophe'. Here, we analyze in detail the benefits of quantum memories for producing multiphoton states, showing how the production rates can be enhanced by many orders of magnitude. We identify the quantity ηB\eta B as the most important figure of merit in this connection, where η\eta and BB are the efficiency and time-bandwidth product of the memories, respectively.Comment: Just over 4 pages, 2 figure

    Enabling a User-Friendly Visualization of Business Process Models

    Get PDF
    Abstract. Enterprises are facing increasingly complex business pro-cesses. Engineering processes in the automotive domain, for example, may comprise hundreds or thousands of process tasks. In such a scenario, existing modeling notations do not always allow for a user-friendly pro-cess visualization. In turn, this hampers the comprehensibility of business processes, especially for non-experienced process participants. This paper tackles this challenge by suggesting alternative ways of visualizing large and complex process models. A controlled experiment with 22 subjects provides first insights into how users perceive these approaches. Key words: process visualization, user experiment, visual design

    Storage of Light in a Hollow-Core Photonic-Crystal Fibre

    No full text
    We report the storage and retrieval of broadband optical pulses using a Raman interaction in a room-temperature ensemble of cesium atoms confined in a hollow-core photonic-crystal fibre. (C) 2013 Optical Society of Americ

    Broadband single-photon-level memory in a hollow-core photonic crystal fibre

    No full text
    Storing information encoded in light is critical for realizing optical buffers for all-optical signal processing(1,2) and quantum memories for quantum information processing(3,4). These proposals require efficient interaction between atoms and a well-defined optical mode. Photonic crystal fibres can enhance light-matter interactions and have engendered a broad range of nonlinear effects(5); however, the storage of light has proven elusive. Here, we report the first demonstration of an optical memory in a hollow-core photonic crystal fibre. We store gigahertz-bandwidth light in the hyperfine coherence of caesium atoms at room temperature using a far-detuned Raman interaction. We demonstrate a signal-to-noise ratio of 2.6:1 at the single-photon level and a memory efficiency of 27 +/- 1%. Our results demonstrate the potential of a room-temperature fibre-integrated optical memory for implementing local nodes of quantum information networks

    Entang-bling: Observing quantum correlations in room-temperature solids

    No full text
    Quantum entanglement in the motion of macroscopic solid bodies has implications both for quantum technologies and foundational studies of the boundary between the quantum and classical worlds. Entanglement is usually fragile in room-temperature solids, owing to strong interactions both internally and with the noisy environment. We generated motional entanglement between vibrational states of two spatially separated, millimeter-sized diamonds at room temperature. By measuring strong nonclassical correlations between Raman-scattered photons, we showed that the quantum state of the diamonds has positive concurrence with 98% probability. Our results show that entanglement can persist in the classical context of moving macroscopic solids in ambient conditions. © Published under licence by IOP Publishing Ltd

    Quantum memory in an optical lattice

    Get PDF
    Arrays of atoms trapped in optical lattices are appealing as storage media for photons, since motional dephasing of the atoms is eliminated. The regular lattice is also associated with band structure in the dispersion experienced by incident photons. Here we study the influence of this band structure on the efficiency of quantum memories based on electromagnetically induced transparency (EIT) and on Raman absorption. We observe a number of interesting effects, such as both reduced and superluminal group velocities, enhanced atom-photon coupling, and anomalous transmission. These effects are ultimately deleterious to the memory efficiency, but they are easily avoided by tuning the optical fields away from the band edges

    Broadband single-photon-level memory in a hollow-core photonic crystal fibre

    No full text
    Storing information encoded in light is critical for realizing optical buffers for all-optical signal processing and quantum memories for quantum information processing. These proposals require efficient interaction between atoms and a well-defined optical mode. Photonic crystal fibres can enhance light-matter interactions and have engendered a broad range of nonlinear effects; however, the storage of light has proven elusive. Here, we report the first demonstration of an optical memory in a hollow-core photonic crystal fibre. We store gigahertz-bandwidth light in the hyperfine coherence of caesium atoms at room temperature using a far-detuned Raman interaction. We demonstrate a signal-to-noise ratio of 2.6:1 at the single-photon level and a memory efficiency of 27 ± 1%. Our results demonstrate the potential of a room-temperature fibre-integrated optical memory for implementing local nodes of quantum information networks. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore