31 research outputs found

    On bound states of multiple t-quarks due to Higgs exchange

    Full text link
    Froggatt, Nielsen et al suggested that the Higgs boson exchange between top quarks produces enough attraction to generate their multiple bound states. Furthermore they claimed that the system of 6 top and 6 anti-top quarks is bound so strongly that the binding energy nearly compensates the masses of t-quarks, making it very light. We calculated the energy of such states more accurately, variationally and by self-consistent mean field approximation, and found that these state are weakly bound for massless Higgs boson and unbound with the account for its mass.Comment: 3 page

    When renormalizability is not sufficient: Coulomb problem for vector bosons

    Get PDF
    The Coulomb problem for vector bosons W incorporates a known difficulty; the boson falls on the center. In QED the fermion vacuum polarization produces a barrier at small distances which solves the problem. In a renormalizable SU(2) theory containing vector triplet (W^+,W^-,gamma) and a heavy fermion doublet F with mass M the W^- falls on F^+, to distances r ~ 1/M, where M can be made arbitrary large. To prevent the collapse the theory needs additional light fermions, which switch the ultraviolet behavior of the theory from the asymptotic freedom to the Landau pole. Similar situation can take place in the Standard Model. Thus, the renormalizability of a theory is not sufficient to guarantee a reasonable behavior at small distances for non-perturbative problems, such as a bound state problem.Comment: Four page

    Coulomb problem for vector bosons versus Standard Model

    Full text link
    The Coulomb problem for vector bosons W(+/-) propagating in an attractive Coulomb field incorporates a known difficulty, i.e. the total charge of the boson localized on the Coulomb center turns out infinite. This fact contradicts the renormalizability of the Standard model, which presumes that at small distances all physical quantities are well defined. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion and eradicates the infinite charge of the boson on the Coulomb center. The effect makes the Coulomb problem for vector bosons well defined and consistent with the Standard Model.Comment: 4 page
    corecore