4,250 research outputs found
Visual stimulation of saccades in magnetically tethered Drosophila
Flying fruit flies, Drosophila melanogaster, perform `body saccades', in which they change heading by about 90° in roughly 70 ms. In free flight, visual expansion can evoke saccades, and saccade-like turns are triggered by similar stimuli in tethered flies. However, because the fictive turns in rigidly tethered flies follow a much longer time course, the extent to which these two behaviors share a common neural basis is unknown. A key difference between tethered and free flight conditions is the presence of additional sensory cues in the latter, which might serve to modify the time course of the saccade motor program. To study the role of sensory feedback in saccades, we have developed a new preparation in which a fly is tethered to a fine steel pin that is aligned within a vertically oriented magnetic field, allowing it to rotate freely around its yaw axis. In this experimental paradigm, flies perform rapid turns averaging 35° in 80 ms, similar to the kinematics of free flight saccades. Our results indicate that tethered and free flight saccades share a common neural basis, but that the lack of appropriate feedback signals distorts the behavior performed by rigidly fixed flies. Using our new paradigm, we also investigated the features of visual stimuli that elicit saccades. Our data suggest that saccades are triggered when expanding objects reach a critical threshold size, but that their timing depends little on the precise time course of expansion. These results are consistent with expansion detection circuits studied in other insects, but do not exclude other models based on the integration of local movement detectors
Configuration mixing within the energy density functional formalism: pathologies and cures
Configuration mixing calculations performed in terms of the Skyrme/Gogny
Energy Density Functional (EDF) rely on extending the Single-Reference energy
functional into non-diagonal EDF kernels. The standard way to do so, based on
an analogy with the pure Hamiltonian case and the use of the generalized Wick
theorem, is responsible for the recently observed divergences and steps in
Multi-Reference calculations. We summarize here the minimal solution to this
problem recently proposed [Lacroix et al, arXiv:0809.2041] and applied with
success to particle number restoration[Bender et al, arXiv:0809.2045]. Such a
regularization method provides suitable corrections of pathologies for EDF
depending on integer powers of the density. The specific case of fractional
powers of the density[Duguet et al, arXiv:0809.2049] is also discussed.Comment: 5 pages, Proceedings of the French-Japanese Symposium, September
2008. To be published in Int. J. of Mod. Phys.
Beyond-mean-field study of the possible "bubble" structure of 34Si
Recent self-consistent mean-field calculations predict a substantial
depletion of the proton density in the interior of 34Si. In the present study,
we investigate how correlations beyond the mean field modify this finding. The
framework of the calculation is a particle-number and angular-momentum
projected Generator Coordinate Method based on
Hartree-Fock-Bogoliubov+Lipkin-Nogami states with axial quadrupole deformation.
The parametrization SLy4 of the Skyrme energy density functional is used
together with a density-dependent pairing energy functional. For the first
time, the generator coordinate method is applied to the calculation of charge
and transition densities. The impact of pairing correlations, symmetry
restorations and shape mixing on the density profile is analyzed step by step.
All these effects significantly alter the radial density profile, and tend to
bring it closer to a Fermi-type density distribution.Comment: 9 pages, 7 figure
On the formulation of functional theory for pairing with particle number restoration
The restoration of particle number within Energy Density Functional theory is
analyzed. It is shown that the standard method based on configuration mixing
leads to a functional of both the projected and non-projected densities. As an
alternative that might be advantageous for mass models, nuclear dynamics and
thermodynamics, we propose to formulate the functional in terms directly of the
one-body and two-body density matrices of the state with good particle number.
Our approach does not contain the pathologies recently observed when restoring
the particle number in an Energy Density Functional framework based on
transition density matrices and can eventually be applied with functionals
having arbitrary density dependencies.Comment: 11 pages, 3 figure
Shell structure of superheavy nuclei in self-consistent mean-field models
We study the extrapolation of nuclear shell structure to the region of superheavy nuclei in self-consistent mean-field models—the Skyrme-Hartree-Fock approach and the relativistic mean-field model—using a large number of parametrizations which give similar results for stable nuclei but differ in detail. Results obtained with the folded-Yukawa potential which is widely used in macroscopic-macroscopic models are shown for comparison. We focus on differences in the isospin dependence of the spin-orbit interaction and the effective mass between the models and their influence on single-particle spectra. The predictive power of the mean-field models concerning single-particle spectra is discussed for the examples of 208Pb and the spin-orbit splittings of selected neutron and proton levels in 16O, 132Sn, and 208Pb. While all relativistic models give a reasonable description of spin-orbit splittings, all Skyrme interactions show a wrong trend with mass number. The spin-orbit splitting of heavy nuclei might be overestimated by 40%–80%, which exposes a fundamental deficiency of the current nonrelativistic models. In most cases the occurrence of spherical shell closures is found to be nucleon-number dependent. Spherical doubly magic superheavy nuclei are found at 184298114, 172292120, or 184310126 depending on the parametrization. The Z=114 proton shell closure, which is related to a large spin-orbit splitting of proton 2f states, is predicted only by forces which by far overestimate the proton spin-orbit splitting in 208Pb. The Z=120 and N=172 shell closures predicted by the relativistic models and some Skyrme interactions are found to be related to a central depression of the nuclear density distribution. This effect cannot appear in macroscopic-microscopic models or semiclassical approaches like the extended Thomas-Fermi-Strutinski integral approach which have a limited freedom for the density distribution only. In summary, our findings give a strong argument for 172292120 to be the next spherical doubly magic superheavy nucleus
- …
