44 research outputs found

    Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning

    Get PDF
    Interatomic potentials: predicting phase transformations in zirconium Machine learning leads to a new interatomic potential for zirconium that can predict phase transformations. A team led by Hongxian Zong at Xi’an Jiaotong University, China, and Turab Lookman at Los Alamos National Laboratory, U.S.A, used a Gaussian-type machine learning approach to produce an interatomic potential that predicted phase transformations in zirconium. They expressed each atomic energy contribution via changes in the local atomic environment, such as bond length, shape, and volume. The resulting machine-learning potential successfully described pure zirconium’s physical properties. When used in molecular dynamics simulations, it predicted a zirconium phase diagram as a function of both temperature and pressure that agreed well with previous experiments and simulations. Developing learnt interatomic potentials in phase-transforming systems could help us better simulate complex systems

    Thermal conductivity and thermal boundary resistance of nanostructures

    Get PDF
    International audienceWe present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results

    Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method

    No full text
    Modified embedded atom method (MEAM) potentials for fcc elements Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb have been newly developed using the original first nearest-neighbor MEAM and the recently developed second nearest-neighbor MEAM formalisms. It was found that the original MEAM potentials for fcc elements show some critical shortcomings such as structural instability and incorrect surface reconstructions on (100), (110), and/or (111) surfaces. The newly developed MEAM potentials solve most of the problems and describe the bulk properties (elastic constants, structural energy differences), point defect properties (vacancy and interstitial formation energy and formation volume, activation energy of vacancy diffusion), planar defect properties (stacking fault energy, surface energy, surface relaxation and reconstruction), and thermal properties (thermal expansion coefficients, specific heat, melting point, heat of melting) of the fcc elements considered, in good agreement with relevant experimental information. It has been shown that in the MEAM the degree of many-body screening (C-min) is an important material property and that structural stability at finite temperatures should be included as a checkpoint during development of semiempirical potentials.11sciescopu

    Modified embedded-atom method interatomic potentials for Ti and Zr

    No full text
    Semiempirical interatomic potentials for hcp elements, Ti and Zr, have been developed based on the MEAM (modified embedded-atom method) formalism. The new potentials do not cause the stability problem previously reported in MEAM for hcp elements, and describe wide range of physical properties (bulk properties, point defect properties, planar defect properties, and thermal properties) of pure Ti and Zr, in good agreement with experimental information. The applicability of the potentials to atomistic approaches for investigation of various materials behavior (slip, irradiation, amorphous behavior, etc.) in Ti or Zr-based alloys is demonstrated by showing that the related material properties are correctly reproduced using the present potentials and that the potentials can be easily extended to multicomponent systems.11sciescopu

    A Modified Embedded-Atom Method Interatomic Potential for Ionic Systems: 2NNMEAM+Qeq

    No full text
    An interatomic potential model that can simultaneously describe metallic, covalent, and ionic bonding is suggested by combining the second nearest-neighbor modified embedded-atom method (2NNMEAM) and the charge equilibration (Qeq) method, as a further improvement of a series of existing models. Paying special attention to the removal of known problems found in the original Qeq model, a mathematical form for the atomic energy is newly developed, and carefully selected computational techniques are adapted for energy minimization, summation of Coulomb interaction, and charge representation. The model is applied to the Ti-O and Si-O binary systems selected as representative oxide systems for a metallic element and a covalent element. The reliability of the present 2NNMEAM + Qeq potential is evaluated by calculating the fundamental physical properties of a wide range of titanium and silicon oxides and comparing them with experimental data, density functional theory calculations, and other calculations based on (semi-)empirical potential models.11Nsciescopu
    corecore