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ARTICLE OPEN

Developing an interatomic potential for martensitic phase
transformations in zirconium by machine learning
Hongxiang Zong1,3, Ghanshyam Pilania2, Xiangdong Ding 1, Graeme J. Ackland3 and Turab Lookman2

Atomic simulations provide an effective means to understand the underlying physics of structural phase transformations. However,
this remains a challenge for certain allotropic metals due to the failure of classical interatomic potentials to represent the multitude
of bonding. Based on machine-learning (ML) techniques, we develop a hybrid method in which interatomic potentials describing
martensitic transformations can be learned with a high degree of fidelity from ab initio molecular dynamics simulations (AIMD).
Using zirconium as a model system, for which an adequate semiempirical potential describing the phase transformation process is
lacking, we demonstrate the feasibility and effectiveness of our approach. Specifically, the ML-AIMD interatomic potential correctly
captures the energetics and structural transformation properties of zirconium as compared to experimental and density-functional
data for phonons, elastic constants, as well as stacking fault energies. Molecular dynamics simulations successfully reproduce the
transformation mechanisms and reasonably map out the pressure–temperature phase diagram of zirconium.

npj Computational Materials  (2018) 4:48 ; doi:10.1038/s41524-018-0103-x

INTRODUCTION
The martensitic transformation (MT) is a class of first-order
displacive phase transformations primarily observed in phase-
transforming metals and their alloys when subjected to high
temperature and/or pressure or stress. The transformation
involves interesting mechanical properties, from strengthening
to superelasticity, and shape memory effects.1–4 Therefore,
understanding the atomistic mechanisms underlying the MT plays
an important role in achieving the desired material properties. The
development of the microstructure arising from these transforma-
tions is strongly governed by the crystallographic symmetry or
geometry of the phases;5,6 hence, atomistic computer simulations
can be especially valuable to gain insight into the details of the
phase transformation kinetics.7–10 However, this is still a challenge
for certain allotropic metals due to the lack of reliable interatomic
potentials. Despite the availability of a large number of
semiempirical potentials for single-component metals,11–13 few
faithfully reproduce phase equilibrium and transformations, limit-
ing the applicability of the atomistic simulations.
The allotropic metal zirconium, with transition temperatures

and pressures that are relatively accessible,14–16 makes an ideal
candidate for studying phase transformation behavior. At ambient
conditions, the equilibrium crystalline structure of Zr is hexagonal
close packed (hcp) below 1180 K and becomes body-centered
cubic (bcc) above this temperature. This hcp to bcc phase
transition occurs, in the context of phonons, due to the anomalies
at the N-point phonon of the T1 branch along the [ξ ξ 0]
direction.17,18 Under pressure, Zr exhibits the crystal structure
sequence hcp→ω→ bcc, and first-principle calculations indicate
that such a sequence is due to an increasing occupation of the d-
states with pressure.19 The pressure-induced hcp to ω transforma-
tion is particularly important because the high-pressure ω phase

can strengthen the metal while also greatly lowering its toughness
and ductility.20,21 This phase transformation can occur in α-Zr
under hydrostatic, shock loading, or high-pressure torsion
conditions.14,21,22 The room temperature (RT) α to ω phase
transition has been observed to occur between 2 and 7 GPa,
depending on the experimental technique, the pressure or shock
environment, and the sample purity.21 Moreover, the transforma-
tion is martensitic, driven by shear and shuffles.23,24

To understand these transformations in Zr from the atomistic
level, several embedded-atom (EAM) and modified embedded-
atom (MEAM) potentials have been developed.13,25–27 Unfortu-
nately, the global phase diagram of pure Zr is still poorly described
by existing semiempirical potentials due to the inevitable
compromise in accuracy for predicting the properties of different
phases during parameterization. The overwhelming majority of
these potentials were designed to reproduce physical properties
of the hcp phase and point defects, but only a few can describe
the bcc–hcp transitions at atmospheric pressure.25,28 These
potentials do not reproduce, for example, the transformation
behavior of α(hcp)→ω under pressure, hindering their use for
studying the mechanisms underlying this transformation and its
effects on the microstructure and properties under driven
conditions. An additional challenge is that current semiempirical
potentials tend to predict rather low basal stacking fault energies,
which fail to capture the deformation behavior of α-Zr (i.e., prism
and twinning slip).16,28,29

A class of machine-learning (ML)-based simulation methods has
recently emerged as a promising means for enabling atomic
simulations with quantum-mechanical (QM) accuracy but afford-
able computational costs. The key idea is to map a set of atomic
environments directly onto numerical values for energies and
forces. In contrast to semiempirical methods (with analytical
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functional forms), the energies and forces are “learned” from a set
of higher-level (quantum-mechanics-based) reference calculations
using the ML algorithm. This essential scheme has been applied to
several single-component metals showing better accuracy of
atomic forces or energies,30–33 including for the bulk RT phases for
Ti.32 However, such single-phase-based learning strategies are not
transferable to situations that have complex MT processes.
Our objective is to construct an interatomic potential that can

capture complex MTs in transforming metals. In this paper, we
developed a machine-learned interatomic potential for Zr by
incorporating domain knowledge of the MT, such as phase
transformation pathways and electronic density changes. The
interatomic potential reproduces not only the properties of the
bcc, hcp, and ω phases, but also the MT between them at a given
temperature or pressure, consistent with experimental results. The
results of testing this potential suggest that it can be employed in
future classical molecular dynamics (MD) simulations of thermal
and mechanical processing as well as the related microstructure
development. Our approach, based on previous efforts in the
literature,30,33 is general and can be applied to other metals,
where several competing phases can occur under extreme
pressures or temperatures.

RESULTS
Strategy
We adopt a Gaussian process-type ML approach31,34 to match the
true potential energy surface (PES), aimed at capturing different
phases in Zr. In order to simulate large systems, the total energy is
expressed as a linear combination of the sum of local energy
contributions from all the atoms.35 In this scenario, each atomic
energy contribution depends only on its local environment, which
is represented by a feature space vector or fingerprint so as to
make the problem more amenable to a ML representation. Figure
1 illustrates the three key steps of the ML interatomic potential
construction process, which includes collecting reference data,
fingerprinting the atomic environments, and establishing a robust
mapping between fingerprints and energies.
The accuracy of the ML potential will strongly depend on the

selection of the fingerprint. Such a fingerprint should differentiate
dissimilar configurations with adequate accuracy and be invariant
under translation, rotation, and the permutation of atoms. While
several such prescriptions have been proposed for solids in the
past,33,34 a complete description of allotropic metals places a
higher demand for the choice of feature vectors as it needs to
capture the local atomic environment of not only the stable
phases but also the transition states along the transformation

Fig. 1 Scheme of the machine-learning interatomic potential development for allotropic metals. The ab inito molecular dynamic runs and
NEB technique are used to accumulate the reference database, where the atomic configurations are transformed to numerical fingerprint
vectors. The training database is then adopted to establish the mapping between fingerprints and atomic energies, which generates the
interatomic potential

Table 1. Adjustable parameters for the machine-learning model of Zr created in this work (see the Strategy section for definitions)

s 0 1 2 3 4 5 6 7

ηs (Å) 1.0 1.346 1.811 2.432 3.281 4.416 5.944 8.0

(μ, σ) (Å) (0, 1.0) (0, 1.34) (0, 1.81) (0, 2.43) (0, 3.28) (0, 4.42) (0, 5.94) (0, 8.0)

(1.0, 6.5) (1.34, 6.5) (1.81, 6.5) (2.43, 6.5) (3.28, 6.5) (4.42, 6.5) (5.94, 6.5) (8.0, 6.5)

g1(cos θjk) 6 cos4 θjk−5 cos2 θjk+1

g2(cos θjk) cos θjk−cos3 θjk
g3(cos θjk) 1−cos15 θjk
Rc (Å) 6.5
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pathways. In our scheme, three different types of local environ-
ments related to structural phase transformations (Fig. 1) are
fingerprinted for Zr atoms, namely, the change in bond length
(pairwise terms), shape change (three-body terms), as well as
volume change (many-body terms). The atomic energy can thus
be expressed as a linear combination of these, i.e.,

Ei ¼ ε2bi þ ε3bi þ εMb
i (1)

where “2b,” “3b,” and “Mb” refer to two-, three-, and many-body
terms, respectively. The local energy corresponding to each
component d∈ {2b,3b,Mb} is given by a linear combination of
kernel functions:

εdi ¼
X

t

wd
t ðVd

i ; V
d
t Þ þ b0 (2)

Here, K is a linear kernel function of the form K(x,y)= x*y,
whereas wt and b0 denote the weighting coefficient and a
constant obtained from the fitting procedure, respectively. t labels
each reference atomic environment and Vd

t is its corresponding
fingerprint vector.
The fingerprints for pairwise contributions are generated by

Gaussian functions suggested by Behler and Parrinello.35,36

Specifically, the two-body component comprises radial functions,
that is,

v2bi ðηsÞ ¼
X

j≠i

e�ðrij=ηsÞ2 fcðrijÞ (3)

where rij is the distance between atoms i and j, ηs is the Gaussian
function width. fcðrijÞ ¼ 0:5½1þ cosðπrij=RcÞ� is a damping function
for atoms within the cutoff distance Rc, and is zero elsewhere.
Here, eight different ηs (Table 1) are adopted to construct the

fingerprint vector for the two-body interactions in Zr, that is
V2b
i ¼ fv2bi ðη1Þ; :::; v2bi ðη7Þg.
Triple-atom interactions are captured by incorporating the

angular dependence into the fingerprint function, which is
important for describing the shape change of lattices during the
phase transformations in Zr. For each atom i, the function is
constructed using

v3bi ðηsÞ ¼
X

k≠i

X

j≠i;j<k

gn cos θjk
� � � e� r2ijþr2ikð Þ=4η2S fc rij

� �
fc rikð Þ (4)

where θjk is the angle between atoms i, j, and k centered on atom
i. gn(cos θjk) represents a polynomial function of cos θjk. Similar to
V2b
i , the various elements of V3b

i are calculated with eight different
ηs, and three different gn(cos θjk) (provided in Supporting
Information).
For the many-body contributions (physically related to the

electronic density with volume changes and structural phase
transformations), we generate the fingerprint in a simple
functional form similar to the embedding energy term of the
MEAM potential.26 Our approach considers the neighborhood
density of a given atom i, defined as

ρmi ðμ; σÞ ¼
X

j≠i

e�ðrij�μÞ2=σ2 fcðrijÞ (5)

where μ and σ are adjustable parameters. Further fingerprints for
many-body components are generated using

vMb
i ðμ; σÞInðρmi ðμ;σÞÞ (6)

For the present Zr potential, 16 sets of (μ, σ) (Table 1) are used
to build the elements of the many-body term fingerprint vector

Fig. 2 Comparison of the potential energy predicted using the ML potential compared to AIMD calculations for a β-Zr supercell, b α-Zr
supercell, c ω-Zr supercell, and d hypothetical fcc-Zr supercell. Note that the β-Zr, α-Zr, and ω-Zr data are included in the “training” dataset. A
perfect correlation with the DFT values would correspond to the black lines. MAE represents mean absolute error
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VMb
i . A similar fingerprint form of pairwise interaction has been

used to describe the RT hcp-Ti phase properties;32 however, our
work incorporates the three-body and many-body terms that are
crucial for capturing the MT. It is important to note that the
scheme also coincides with the generalized pseudopotential
theory, which provides a first-principles approach to multi-ion
interatomic potentials in d-band transition metals.37,38

Force field performance
To analyze the quality of our ML potential, we test how much the
predicted energies deviate from Density Function Theory (DFT)
reference values. Figure 2 compares the predicted energies to the
DFT calculations for all configurations of Zr that are used in the
training phase and for validation. In order to check the robustness
of our potential for different phases, we test the configurations of
experimentally observed bcc, hcp, and ω phases individually by
calculating their mean absolute errors (MAEs), which monitors the
difference between the first-principle calculation and our potential
prediction. As shown in Fig. 2, the MEAs of the prediction model
for the average energy of atoms in the three phases (in our test
database) are 6.7 meV/atom, 5.8 meV/atom, and 4.3 meV/atom,
respectively. It is of the order of the expected numerical and
theoretical accuracy of the reference quantum-mechanics-based
calculations. It is interesting to note that the training points with
the lowest overall energy show the lowest fitting errors if we
further break down the ML model’s performance according to
configuration types: high-pressure or low-temperature configura-
tions will be easier for an ML potential to fit as they are closer to
the perfect crystalline structures. Subsequently, we test the
performance of the model for a hypothetical fcc-Zr structure.
Although the fcc crystal structure does not appear on the usual

pressure–temperature phase diagram for Zr, the epitaxial growth
of fcc-Zr thin films has been reported.39 Given that such fcc data
were never used in the training set during the “training” process,
we would expect that energies of such configurations will be
difficult to predict. Surprisingly, correlation plots of energies show
an acceptable fitting error with an MAE of 6.3 meV/atom (Fig. 2d).
This indicates good transferability of the present ML model to
various structural environments.
We next consider the effects of volume change on atomic

potential energies as this determines the most stable phases
under pressure. Figure 3a shows the energy for different volumes
for α, β, and ω phases. The DFT calculations and ML prediction
follow the same trend: the β phase has much higher enthalpy than
α or ω, and the most stable phase changes from α to ω upon
compression at 0 K. To estimate the transition pressure for the
α→ω transformation in our ML potential, we calculated the
enthalpy difference between α and ω as a function of external
pressure, as shown in Fig. 3b. At zero temperature, α-Zr transforms
to ω at a pressure of 3.5 GPa. This is close to the estimates of the
α→ω transformation pressure (3.4 GPa) at RTs from Zhang et al.’s
experiment.15

DISCUSSION
To evaluate the reliability of the ML potential, we computed
several physical properties of Zr related to phase transformations.
The elastic constants Cij of α, β, and ω phases were first computed
by applying a set of small volume-conserving strains and fitting
the energy change with a parabolic function, which allows for
relaxation of the atomic positions. Accurate elastic constants are
important for the correct description of the long-range strain
fields around martensitic variants and defect structures (such as
dislocations). As indicated in Table 2, the maximum deviation
between ML and DFT elastic constants is 10%, indicating the
accuracy of the potential for effects of strain on Zr. Note that
elastic constants in the table were not included in the “training”
data, but came out to be in good agreement with the DFT data.
This agreement indicates adequate model transferability.
Surface energies are among the least predictable properties for

classical atomic potentials as they often involve large changes of
coordination number or atomic environments. The most repre-
sentative ones are stacking fault energies as they control the
dislocation slip or deformation twinning processes, thus influen-
cing the development of martensitic variants. Here we consider
stacking fault energies corresponding to the basal plane as they

Fig. 3 Potential energies of α, β, and ω Zr as a function of volume or pressure for the present ML potential. a The volume-dependent energy of
α (black), β (red), and ω (blue) at several volumes. The ML potential predicted curves are lines. The DFT data of α, β, and ω phase appear as an
open triangle, cube, and a circle, respectively. b The enthalpy difference between α and ω as a function of pressure. The enthalpy difference
suggests a transition pressure of 3.5 GPa

Table 2. Calculated elastic constants (units: GPa) of α-Zr, β-Zr, and ω-Zr
using the present ML potential in comparison with DFT data

Structure C11 C12 C13 C33 C44

α (ML) 143.4 72.3 65.3 158.0 28.7

α (DFT) 156 61.0 62.0 166 26.0

β (ML) 87.3 111.8 ― ― 36.1

β (DFT) 84.2 91.4 ― ― 32.3

ω (ML) 152.1 71.0 57.4 179.4 28.3

ω (DFT) 161.7 72.6 53.5 195.6 33.7
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are easily underestimated by existing EAM or MEAM poten-
tials.28,29 There are three possible faults on the basal plane. The
two intrinsic faults have one of the two stacking sequences
ABABCBCB (I1) and ABABCACA (I2), while the extrinsic fault has the
stacking sequence ABABCABAB (E). The most important fault is the
I2-type intrinsic stacking fault, which determines the dissociation
of a dislocation on the basal plane into partial dislocations.28 The
ML potential correctly predicts a metastable I2 stacking fault with
a stacking fault energy of 205.5 mJ/m2, close to its DFT counter-
part (i.e., 201.0 mJ/m2).29

Figure 3 compares the phonon spectra obtained with the
present ML potential for α, β, and ω Zr with the available
experimental data and results from DFT calculations.
Phonon–dispersion curves at 0 K were computed by Fourier
transformation of the dynamical matrix in several high-symmetry
directions. For all three phases, the potential accurately repro-
duces the low-frequency regions of the phonon spectrum but
overestimates the frequencies of the optical branches. It should be
noted that quite similar discrepancies were found in all previous
calculations with classic potentials.16 Both acoustic and optical
phonons are needed to describe the shuffle and strain degrees of
freedom in the martensitic phase transformations.
For the high-temperature β-Zr, the bcc lattice becomes

mechanically unstable at lower temperatures (Fig. 4a) and shows
an unstable phonon branch along the T-[110] direction. This
corresponds to the Burgers mechanism of the hcp–bcc (α−β)
transition. The zero-temperature phonon results for the present
ML potential and DFT reproduce this instability by showing an
imaginary phonon branch at the N point. However, the experi-
mental data40 did not show this due to the fact that the neutron-
scattering experiment was performed at high temperatures. Note
that the DFT calculation also shows another unstable phonon

branch which is responsible for the (111) plane collapse
mechanism of the β→ω transformation. This is associated with
the ω phase being stable from the DFT calculation, whereas the α
phase is most stable for our ML potential.
The phonon spectra of the α and ω phases are shown in Fig. 4b,

c, respectively. For the hcp (α) Zr phase, although we reproduce
the overall trend of the experimental phonon branches, the ML
potential overestimates the experimental optical-phonon frequen-
cies by about 20–30%. Since there are no experimental data for
the high-pressure ω phase, we compare the phonon spectrum for
the ML potential to DFT calculations and find better agreement
than that for the α phase. In contrast to the α phase, the optical
branches of the ω phase are underestimated by the ML approach
and the deviations are much smaller. Previous studies suggest that
the deviations of the optical phonons are due to the inaccurate
prediction of point-defect energies, which do not adversely affect
the energy barrier for the structural phase transformations and the
phase diagram.16,41

We have shown that the present ML potential adequately
describes a number of basic physical properties of the pure Zr
system. In this section, we present several core applications for
which our potential is particularly well suited. In particular,
classical MD simulations with the present ML interatomic potential
are used to study the different phases and martensitic transforma-
tions between them. The simulations determine the phase
stability and temperature–pressure phase diagram of α, β, and ω
Zr, as well as possible phase transformation mechanisms.
To estimate the stability range of the α, β, and ω phases, we

perform MD starting from a 12 × 12 × 12 bcc (β) supercell with
3456 Zr atoms that is commensurate with all three phases if
properly strained. MD simulations were performed using a time
step of 1 fs. Periodic boundary conditions were applied along all

Fig. 4 The phonon spectra of α, β, and ω Zr. The ML results are compared to DFT and to experimental data38 for the α and β phases (blue
circles). For the α and ω phase, the ML potential accurately reproduces the low-energy acoustic branches but overestimates optical and high-
energy acoustic branches due to the inaccurate prediction of point-defect energies. The β phase is mechanically unstable at low temperatures
and transforms to α or ω. Imaginary frequencies of unstable modes are plotted as negative values
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three dimensions. The Nose–Hoover thermostat42 and the
Parrinello–Rahman barostat43 was used for controlling tempera-
ture and pressure, respectively. For each pressure and tempera-
ture value, we simulate up to 0.5 ns and observe the phase
evolution of the system. There are significant mechanical
constraints which cause additional transformation hysteresis in
the experiment. The Parrinello–Rahman barostat allows changes
in size and shape of the simulation box, easing the mechanical
constraint.
Figure 5a shows a cross-sectional view of the β→ α phase

transformation at low pressures. Upon continued cooling to 300 K
at 0 GPa, the product α phase begins to nucleate randomly within
the bcc matrix, characterized by the coexistence of bcc (blue

atoms) and hcp (orange atoms) lattices, as shown in the middle
figure of Fig. 5a. The growth of the hcp nucleus gives rise to the
formation of two α variants (top right). This multi-domain
martensite structure has been frequently observed in previous
simulations for the bcc–hcp phase transformations.44 Moreover,
indexing of the initial bcc and the final hcp structures clearly
indicates that the phase transformation occurs via the Burgers
mechanism,2,45 which has the orientation relationship (110)bcc ∥
(0001)hcp and [111]bcc ∥ [11–20]hcp.
The increase of pressure changes the product phase from α to

ω. A typical β→ω phase transformation process is shown in Fig.
5b. At 8 GPa, two ω variants are successively formed with their
basal axis along different [111]bcc directions. The narrow ω variant
is embedded within the matrix of the other, and the dark blue
atoms show the corresponding domain boundaries (bottom
middle). To minimize the total energy of the system, the large ω
variant then grows at the expense of the narrow ω variant (bottom
right). In contrast to the transition at low pressures, the final ω
structure maintains a perfect single-domain structure. The
corresponding structures before and after the phase transforma-
tion indicate that the β→ω transformation in Zr indeed follows
the (111)bcc plane collapse mechanism.21

Figure 6 shows the predicted Zr equilibrium phase diagram as a
function of pressure and temperature for the ML potential. At
pressures below 4.0 GPa and temperatures below 900 K, the β
phase transforms into the α phase. At pressures above 4.0 GPa and
temperatures below about 800 K, the β phase transforms into the
ω phase. The transition temperatures of both β→ α and β→ω
drop gradually with increasing pressure (dP/dT < 0), and the β
phase becomes more stable under higher pressures. In contrast,
the phase boundary between the α and ω phases shows a positive
slope (dP/dT > 0). In addition, the triple point between the α, β,
and ω phases is inferred to occur at about 4 GPa and 800 K.
The ML predicted phase diagram agrees reasonably well with

experimental observations and previous theoretical calcula-
tions.46–50 At zero pressure, the calculated bcc–hcp transformation
temperature is about 1000 K, slightly lower than the experimental
value (1180 K). Experimental measurements of the RT α–ω
transformation pressure are highly dispersed (between 2 and

Fig. 5 Typical microstructure evolution of β-Zr during cooling at P= 0 GPa and P= 8.0 GPa using the present ML potential. The initial perfect
bcc structure transforms to the hcp lattice including two domain boundaries a while it transforms to ω phase at high pressure b. The blue
color represents the ideal bcc structure, green is the distorted bcc structure, orange represents the ideal hcp structure, and the microstructure
with orange and blue stacking is the ω phase

Fig. 6 Predicted phase diagram of pure Zr as a function of pressure
and temperature. The ML potential accurately describes all three
solid phases α, β, and ω of Zr and captures the martensitic phase
transformations between them. The open squares, circles, triangles,
and the orange lines are obtained from ML–MD simulations, while
black lines46 and solid symbols belong to previous experimental
data.46–50
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7 GPa) due to the large hysteresis of the α–ω transformation. The
α→ω transformation for the present ML potential occurs at 4 GPa,
consistent with the region of experimental measurements.46

Experimental values for the triple point range from 3 to 4 GPa
and 800 to 1000 K, similar to the ML potential values of 4 GPa and
800 K. Although not very accurate as yet, the agreement of the ML
transition pressure with experimental data provides confidence
that we can accurately simulate pressure-induced MT, enabling us
to access atomic simulation of large supercells and understand the
transformation mechanisms, kinetics, as well as mechanical
properties under different boundary conditions.
The structural motif of the Zr’s phases is distinct and dominated

by local interactions allowing the interatomic potential to capture
the emergent dynamics with such success. Different from classical
potential, our ML potential is directly learned from high-
throughput QM calculations, and thus can accurately grasp the
QM information necessary (including temperature effect) of
different phases in Zr during the dynamic processes, i.e., learned
from ab initio molecular dynamics simulations (AIMD) simulations
of Zr at finite temperatures, enabling safe interpolation.
In summary, we have developed an interatomic potential for

the phase-transforming metal, Zr, by directly learning from
reference quantum MD simulations. The resultant ML approach
predicts energies that are mainly of the order of meV/atom and
demonstrates good transferability to various structural environ-
ments. In contrast to the existing semiempirical potentials, the ML
potential reproduces properties of the α, β, and ω phases with
reasonable accuracy. Several applications have been presented for
which our potential is particularly well suited. In particular,
classical MD simulations have been performed to investigate
both temperature- and pressure-induced MT. The simulations
reasonably reproduce the Zr equilibrium phase diagram as a
function of pressure and temperature, as well as the transforma-
tion mechanisms between α, β, and ω phases. The strategies
outlined here to construct an interatomic potential for Zr that
shows complex pressure- or temperature-driven MT behavior can
be applied to other phase-transforming systems (such as Fig. S2
for potassium).

METHODS
Reference database preparation
Structures for reference atomic environments and benchmarks were
accumulated from ab initio MD runs and nudged elastic band (NEB)
calculations.51 Both were performed using the Vienna ab initio simulation
package (VASP)52 within the Perdew–Burke–Ernzerhof generalized gradi-
ent approximation (GGA)53 for the exchange-correlation function. To
ensure the transferability of the potential to a wide variety of atomistic
situations, Zr in different geometric arrangements was considered,
including modest-sized bulk samples in the bcc, hcp, or ω phase (the
lattice constants and size of the supercells are listed in Supporting
Information). For each AIMD run, the sample was generated at the
appropriate density and held at constant temperatures (i.e., 100 K, 800 K,
and 1600 K) for 6000 steps. The time step was 1 fs in all AIMD simulations.
AIMD snapshots were extracted from the AIMD trajectories and
recalculated with a higher cutoff energy of 420 eV and denser k-point
mesh of 3 × 3 × 3 to determine accurate forces and energies for the
training process. Once the AIMD training database of the bcc, hcp, and ω
structures had been generated, it was further extended by including
configurations, which are generated from biasing the atoms collectively
from one phase to the other along the well-known transformation
pathways of the β→ α, β→ω, and α→ω phase transformations23,24 with
NEB technique (provided in Supporting Information).

Interatomic potential parameterization
As shown in Fig. 1, the combined reference database (including numerical
fingerprint vectors and the corresponding target values) was machine-
learned to estimate the coefficients in Eq. (2). To achieve a better precision,
all the fingerprints in the database are initially normalized to [0,1] before

the regression process. All coefficients wd
t and b0 are then learned by using

the kernel ridge regression method.54 Furthermore, atomic forces can be
found by differentiating the analytic form of the potential, and because all
fingerprints are based on interatomic separations, the forces on atom i can
be written as a sum of contributions from its neighbors, j, each
acting along the vector rij. Accordingly, the pressure of the system can
also be calculated using the method developed by Thompson and
Plimpton.55
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