13 research outputs found

    Release of Metal Ions from Orthodontic Appliances: An In Vitro Study

    Get PDF
    In this paper, we report the results of an in vitro experiment on the release of metal ions from orthodontic appliances composed of alloys containing iron, chromium, nickel, silicon, and molybdenum into artificial saliva. The concentrations of magnesium, aluminum, silicon, phosphorus, sulfur, potassium, calcium, titanium, vanadium, manganese, iron, cobalt, copper, zinc, nickel, and chromium were significantly higher in artificial saliva in which metal brackets, bands, and wires used in orthodontics were incubated. In relation to the maximum acceptable concentrations of metal ions in drinking water and to recommended daily doses, two elements of concern were nickel (573 vs. 15 μg/l in the controls) and chromium (101 vs. 8 μg/l in the controls). Three ion release coefficients were defined: α, a dimensionless multiplication factor; β, the difference in concentrations (in micrograms per liter); and γ, the ion release coefficient (in percent). The elevated levels of metals in saliva are thought to occur by corrosion of the chemical elements in the alloys or welding materials. The concentrations of some groups of dissolved elements appear to be interrelated

    A new washing procedure for inorganic element analysis of hair

    Get PDF
    International audienceHair incorporates chemical compounds from the bloodstream and external sources as it grows. Different analytical procedures are proposed, but no consensus can be found for external contamination removal (washing stage). Thus, a major limitation of the use of hair analysis for human biomonitoring is the issue related to the washing efficiency, and the objective of this study was to propose a simple washing method for a better cleaning of external contamination. Based on a sequence of three steps of detergent or acid washing (Triton, nitric acid, and hydrochloric acid), the TNCl method was tested on raw and spiked samples and compared to other methods. Thirty-seven inorganic elements were analyzed by inductively Coupled Plasma Mass Spectrometry (ICP-MS) after washing and acid digestion of 10 hair samples (Li, Be, Na, Mg, Al, P, K, Ca, V, Cr, Fe, Mn, Co, N, Cu, Zn, As, Se, Sr, Mo, Ru, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Gd, Lu, Tl, Pb, Bi, Th, and U). The inorganic element concentrations in the hair samples were compared to those reported in the literature. The TNCl method was shown to be more efficient than other methods based on the use of surfactants and organic solvents
    corecore