8 research outputs found

    Karst waters in potable water supply: a global scale overview

    No full text
    Karst aquifers are one of the main potable water sources worldwide. Although the exact global karst water utilisation figures cannot be provided, this study represents an attempt to make an upgraded assessment of earlier and often circulated data. The main objective of the undertaken analysis is not only to provide an assessment of the utilisation of current karst aquifers, but also to estimate possible trends under various impact factors such as population growth or climate changes. In \u3e 140 countries, different types of karstified rocks crop out over some 19.3 × 106 km2, covering \u3e 14% of ice-free land. The main ‘karst countries’, those with \u3e 1 × 106 km2 of karst surface are Russia, USA, China and Canada, while among those with \u3e 80% of the territories covered by karst are Jamaica, Cuba, Montenegro and several others. In contrast, in a quarter of the total number of countries, karstic rocks are either totally absent or have a minor extension, meaning that no karst water sources can be developed. Although the precise number of total karst water consumers cannot be defined, it was assessed in 2016 at approximately 678 million or 9.2% of the world’s population, which is twice less than what was previously estimated in some of the reports. With a total estimated withdrawal of 127 km3/year, karst aquifers are contributing to the total global groundwater withdrawal by about 13%. However, only around 4% of the estimated average global annually renewable karstic groundwater is currently utilised, of which \u3c 1% is for drinking purposes. Although often problematic because of unstable discharge regimes and high vulnerability to pollution, karst groundwater represents the main source of potable water supply in many countries and regions. Nevertheless, engineering solutions are often required to ensure a sustainable water supply and prevent negative consequences of groundwater over-extraction

    The unfolding water drama in the Anthropocene: towards a resilience-based perspective on water for global sustainability

    No full text
    The human influence on the global hydrological cycle is now the dominant force behind changes in water resources across the world and in regulating the resilience of the Earth system. The rise in human pressures on global freshwater resources is in par with other anthropogenic changes in the Earth system (from climate to ecosystem change), which has prompted science to suggest that humanity has entered a new geological epoch, the Anthropocene. This paper focuses on the critical role of water for resilience of social-ecological systems across scales, by avoiding major regime shifts away from stable environmental conditions, and in safeguarding life-support systems for human wellbeing. It highlights the dramatic increase of water crowding: near-future challenges for global water security and expansion of food production in competition with carbon sequestration and biofuel production. It addresses the human alterations of rainfall stability, due to both land-use changes and climate change, the ongoing overuse of blue water, reflected in river depletion, expanding river basin closure, groundwater overexploitation and water pollution risks. The rising water turbulence in the Anthropocene changes the water research and policy agenda, from a water-resource efficiency to a water resilience focus. This includes integrated land and water stewardship to sustain wetness-dependent ecological functions at the landscape scale and a stronger emphasis on green water management for ecosystem services. A new paradigm of water governance emerges, encouraging land-use practices that explicitly take account of the multifunctional roles of water, with adequate attention to planetary freshwater boundaries and cross-scale interactions

    Electrochemical Sensors for the Detection of Superoxide and Nitric Oxide — Two Biologically Important Radicals

    No full text

    Personalized diagnosis and therapy.

    No full text
    Personalized medicine, i.e., the use of information about a person’s genes, proteins, metabolites, and environment to prevent, diagnose, and treat disease, has been much talked about in recent years. So some observers are wondering what the excitement is all about cumulating in the following statement: “Personalized health care is nothing new. Doctors have always tried to fit the therapy to the patient’s need if possible.” But what has happened more recently is that one has now begun to go a level deeper, i.e., to explore the biology of the disease and its treatment at the molecular level. However, molecular medicine does not per se define personalized medicine, but the molecular tools are important as they should enable greater relevance in the information provided by corresponding diagnostic tests (see below) (Edwards et al. 2008; Weedon et al. 2006; Romeo et al. 2007; Hegel et al. 1999; Wildin et al. 2001; Grant et al. 2006; Rothman and Greenland 2005; Raeder et al. 2006; Hegele et al. 2000; Capell and Collins 2006; Delepine et al. 2000; Janssens et al. 2006; Xiayan and Legido-Quigley 2008; Figeys and Pinto 2001; Müller 2002, 2010; Pearson et al. 2007; Janssens et al. 2008; Risch and Merikangas 1996; Janssens and van Duijn 2008; McCarthy 2003; McCarthy et al. 2003; Stumvoll et al. 2005; Lyssenko et al. 2005; Florez et al. 2003)
    corecore