11 research outputs found

    Clinicopathological Significance and Prognostic Value of DNA Methyltransferase 1, 3a, and 3b Expressions in Sporadic Epithelial Ovarian Cancer

    Get PDF
    Altered DNA methylation of tumor suppressor gene promoters plays a role in human carcinogenesis and DNA methyltransferases (DNMTs) are responsible for it. This study aimed to determine aberrant expression of DNMT1, DNMT3a, and DNMT3b in benign and malignant ovarian tumor tissues for their association with clinicopathological significance and prognostic value. A total of 142 ovarian cancers and 44 benign ovarian tumors were recruited for immunohistochemical analysis of their expression. The data showed that expression of DNMT1, DNMT3a, and DNMT3b was observed in 76 (53.5%), 92 (64.8%) and 79 (55.6%) of 142 cases of ovarian cancer tissues, respectively. Of the serious tumors, DNMT3a protein expression was significantly higher than that in benign tumor samples (P = 0.001); DNMT3b was marginally significant down regulated in ovarian cancers compared to that of the benign tumors (P = 0.054); DNMT1 expression has no statistical difference between ovarian cancers and benign tumor tissues (P = 0.837). Of the mucious tumors, the expression of DNMT3a, DNMT3b, and DNMT1 was not different between malignant and benign tumors. Moreover, DNMT1 expression was associated with DNMT3b expression (P = 0.020, r = 0.195). DNMT1 expression was associated with age of the patients, menopause status, and tumor localization, while DNMT3a expression was associated with histological types and serum CA125 levels and DNMT3b expression was associated with lymph node metastasis. In addition, patients with DNMT1 or DNMT3b expression had a trend of better survival than those with negative expression. Co-expression of DNMT1 and DNMT3b was significantly associated with better overall survival (P = 0.014). The data from this study provided the first evidence for differential expression of DNMTs proteins in ovarian cancer tissues and their associations with clinicopathological and survival data in sporadic ovarian cancer patients

    A Proof-Of-Principle Study of Epigenetic Therapy Added to Neoadjuvant Doxorubicin Cyclophosphamide for Locally Advanced Breast Cancer

    Get PDF
    BACKGROUND: Aberrant DNA methylation and histone deacetylation participate in cancer development and progression; hence, their reversal by inhibitors of DNA methylation and histone deacetylases (HDACs) is at present undergoing clinical testing in cancer therapy. As epigenetic alterations are common to breast cancer, in this proof-of-concept study demethylating hydralazine, plus the HDAC inhibitor magnesium valproate, were added to neoadjuvant doxorubicin and cyclophosphamide in locally advanced breast cancer to assess their safety and biological efficacy. METHODOLOGY: This was a single-arm interventional trial on breast cancer patients (ClinicalTrials.gov Identifier: NCT00395655). After signing informed consent, patients were typed for acetylator phenotype and then treated with hydralazine at 182 mg for rapid-, or 83 mg for slow-acetylators, and magnesium valproate at 30 mg/kg, starting from day –7 until chemotherapy ended, the latter consisting of four cycles of doxorubicin 60 mg/m(2) and cyclophosphamide 600 mg/m(2) every 21 days. Core-needle biopsies were taken from primary breast tumors at diagnosis and at day 8 of treatment with hydralazine and valproate. MAIN FINDINGS: 16 patients were included and received treatment as planned. All were evaluated for clinical response and toxicity and 15 for pathological response. Treatment was well-tolerated. The most common toxicity was drowsiness grades 1–2. Five (31%) patients had clinical CR and eight (50%) PR for an ORR of 81%. No patient progressed. One of 15 operated patients (6.6%) had pathological CR and 70% had residual disease <3 cm. There was a statistically significant decrease in global 5(m)C content and HDAC activity. Hydralazine and magnesium valproate up- and down-regulated at least 3-fold, 1,091 and 89 genes, respectively. CONCLUSIONS: Hydralazine and magnesium valproate produce DNA demethylation, HDAC inhibition, and gene reactivation in primary tumors. Doxorubicin and cyclophosphamide treatment is safe, well-tolerated, and appears to increase the efficacy of chemotherapy. A randomized phase III study is ongoing to support the efficacy of so-called epigenetic or transcriptional cancer therapy

    RAR and RXR modulation in cancer and metabolic disease

    No full text
    Retinoic acid receptors (RARs) are ligand-controlled transcription factors that function as heterodimers with retinoid X receptors (RXRs) to regulate cell growth and survival. The success of RAR modulation in the treatment of acute promyelocytic leukaemia (APL) has stimulated considerable interest in the development of RAR and RXR modulators. This has been aided by recent advances in the understanding of the biological role of RARs and RXRs and in the design of selective receptor modulators that might overcome the limitations of current drugs. Here, we discuss the challenges and opportunities for therapeutic strategies based on RXR and RAR modulators, with a focus on cancer and metabolic diseases such as diabetes and obesity

    RAR and RXR modulation in cancer and metabolic disease

    No full text
    corecore