6 research outputs found

    Atomically-thin Ohmic Edge Contacts Between Two-dimensional Materials

    No full text
    With the decrease of the dimensions of electronic devices, the role played by electrical contacts is ever increasing, eventually coming to dominate the overall device volume and total resistance. This is especially problematic for monolayers of semiconducting transition metal dichalcogenides (TMDs), which are promising candidates for atomically thin electronics. Ideal electrical contacts to them would require the use of similarly thin electrode materials while maintaining low contact resistances. Here we report a scalable method to fabricate ohmic graphene edge contacts to two representative monolayer TMDs, MoS2 and WS2. The graphene and TMD layer are laterally connected with wafer-scale homogeneity, no observable overlap or gap, and a low average contact resistance of 30 k Omega.mu m. The resulting graphene edge contacts show linear current voltage (I-V) characteristics at room temperature, with ohmic behavior maintained down to liquid helium temperatures.114630sciescopu

    Pseudospin-driven spin relaxation mechanism in graphene

    No full text
    The prospect of transporting spin information over long distances in graphene, possible because of its small intrinsic spin-orbit coupling (SOC) and vanishing hyperfine interaction, has stimulated intense research exploring spintronics applications. However, measured spin relaxation times are orders of magnitude smaller than initially predicted, while the main physical process for spin dephasing and its charge-density and disorder dependences remain unconvincingly described by conventional mechanisms. Here, we unravel a spin relaxation mechanism for non-magnetic samples that follows from an entanglement between spin and pseudospin driven by random SOC, unique to graphene. The mixing between spin and pseudospin-related Berrya's phases results in fast spin dephasing even when approaching the ballistic limit, with increasing relaxation times away from the Dirac point, as observed experimentally. The SOC can be caused by adatoms, ripples or even the substrate, suggesting novel spin manipulation strategies based on the pseudospin degree of freedom.The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement number 604391 Graphene Flagship. This work was also funded by Spanish Ministry of Economy and Competitiveness under contracts MAT2012-33911 and MAT2010-18065. S.O.V. acknowledges ERC Grant agreement 308023 SPINBOUND.Peer Reviewe
    corecore